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We address the problem of performing efficient spatial and topological queries on large tetrahedral meshes

with arbitrary topology and complex boundaries. Such meshes arise in several application domains, such as

3D Geographic Information Systems (GISs), scientific visualization and finite element analysis. To this aim,

we propose Tetrahedral trees, a family of spatial indexes based on a nested space subdivision (an octree or a

kD-tree) and defined by several different subdivision criteria. We provide efficient algorithms for spatial and

topological queries on Tetrahedral trees and compare to state-of-the-art approaches. Our results indicate that

Tetrahedral trees are an improvement over R
∗
-trees for querying tetrahedral meshes; they are more compact,

faster in many queries and stable at variations of construction thresholds. They also support spatial queries

on more general domains than topological data structures, which explicitly encode adjacency information for

efficient navigation, but have difficulties with domains with a non-trivial geometric or topological shape.
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1 INTRODUCTION
Tetrahedral meshes are used to discretize space in a broad range of applications across numerous

scientific disciplines. They are used, for example, to model scalar and vector fields sampled at

irregularly distributed points in space [21, 78], or to model three-dimensional features in Geographic

Information Systems (3D GISs) [68, 69, 97]. They also underpin finite element and structural analysis

over domains with complex topology and arbitrary shapes [13, 40, 50, 57]. Even when fields are

sampled over regular grids, dataset simplification produces unstructured datasets which need to be

triangulated through tetrahedral meshes [1, 19, 41, 67]. The popularity of tetrahedral meshes in

these applications stems, in part, from their simple representation, their ability to adapt to features

at varying spatial and temporal scales, and the availability of efficient and robust mesh generation

algorithms even in the presence of complex geometric boundaries [18, 86, 87].

In simulation, visualization and analysis applications, we often require local information about

features in the problem domain. For example, to probe a field at an arbitrary location [3, 39, 53], we
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need to interpolate field values from nearby samples. Similar needs arise when integrating field

quantities over spatial regions of interest, and when computing volumetric overlap between the

cells of two meshes, for example, to map field data between different spatial discretizations [42].

Such spatial queries are typically composed of a few primitive building blocks that can efficiently

locate the mesh cells covering the query region. In particular, point location queries find the mesh cell

containing a given point, while range queries, also referred to as box orwindow queries, find all mesh

cells that overlap an axis-aligned region of space. Spatial joins can be used to combine spatial features

from multiple meshes. These are also the main query types in spatial databases [63, 72, 85, 96], and

can be used to define proximity and containment queries.

After performing a spatial query on a mesh, we are often interested in traversing the local mesh

in the vicinity of the query region. For example, in fluid simulations, tracer particles are seeded near
features of interest and flow along integral paths of vector fields or scalar field gradients [55, 82].

Similarly, visibility [27, 90] and watershed [56, 75] queries traverse the mesh towards a local

horizon or critical points. Other applications require local modifications to the mesh connectivity.

For example, when inserting new points into a Delaunay triangulation, one needs to locate and

repair the invalidated tetrahedra (i.e., those whose circumcircles contain the inserted point) [38, 73].

Despite the vast literature on spatial indexes and queries, few works exploit the rich connectivity

information available in tetrahedral meshes while also supporting spatial queries over arbitrary

spatial domains. While spatial indexes based on R-trees [45] and Bounding Volume Hierarchies

(BVHs) are perhaps the most widely used, e.g. in spatial databases [63] and collision detection [32],

they are optimized for collections of discrete objects rather than meshes. As such, mesh elements

(tetrahedra, vertices, etc.), which are mutually adjacent or incident, could be stored in distant tree

branches, making it difficult to use the results to traverse through the mesh. Alternatively, spatial

queries based on stochastic walks require only the mesh connectivity but are restricted to convex

domains [28, 59]. In this approach, which is popular in the computational geometry literature,

queries are initialized at a random mesh cell and traverse through the mesh towards the query

point. This approach is very easy to implement, since it does not require a spatial index, but can

fail when the domain is not simply-connected.

Here, we propose Tetrahedral trees, a family of spatial indexes over tetrahedral meshes which

support efficient spatial queries and reconstruction of the local mesh connectivity on the query

results. Tetrahedral trees utilize a nested spatial index (an octree, or a kD-tree) to recursively

decompose the embedding space of the mesh, and index the cells of the mesh in all leaf blocks of

the tree that they intersect. The decomposition can be easily tuned to limit the number of vertices

and/or tetrahedra encoded in a leaf block. Although each tetrahedron can be indexed in multiple leaf

blocks, our efficient leaf block encoding (adapted from the representation in [35]), which encodes

contiguous ranges of cell indices, yields a very compact representation for Tetrahedral trees. The

storage overhead for the spatial index is typically only 5-10% higher than the one for an indexed
mesh representation that only encodes the boundary vertices for each tetrahedron. We note that

the indexed representation does not support efficient spatial or topological queries, while the data

structure in [35] does not support efficient spatial queries. Our work builds on a preliminary short

paper [25] in which we introduced some spatial indexes for tetrahedral meshes and spatial (but not

topological) queries on such meshes. As we demonstrate in Sections 6 and 7, our compacted leaf

block representation significantly reduces the spatial index overhead while also improving query

response times since it acts as a clustering mechanism for the locally indexed submeshes within a

leaf block.
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The major contributions of this paper are:

• Scalable algorithms for executing spatial queries on tetrahedral meshes with additional

support for navigating through the mesh connectivity on the query results.

• Improved encoding and compression of the information indexed within each leaf block

and effective tuning of bucketing thresholds that enable the indexing of larger tetrahedral

meshes on commodity hardware. We demonstrate the effectiveness of the Tetrahedral trees

representation on structured and unstructured tetrahedral meshes with up to 30 million

tetrahedra.

• Extension of subdivision rules, originally defined for 2D uncorrelated data, to decompose and

organize structured and unstructured tetrahedral meshes. We demonstrate the importance of

considering the cardinality of the star of a vertex in a tetrahedral mesh for setting bucketing

thresholds and evaluate the effectiveness of these rules on the resulting spatial decomposition

and index compression.

• An extensive evaluation of Tetrahedral trees through comparisons, in terms of memory and

query times, with representatives of the most commonly used data structures for spatially

querying tetrahedral meshes: an adjacency-based topological data structure (the IA data
structure [65]) and an R∗-tree [7]. We demonstrate that, across all datasets, Tetrahedral trees

are significantly smaller (typically by a factor of 2-5), can be easily tuned and consistently

respond to queries faster than the state-of-the-art data structures.

The remainder of this paper is organized as follows. In Sections 2 and 3, we provide background

notions on tetrahedral meshes and review related work on spatial indexes as well as topological

data structures. In Section 4, we introduce Tetrahedral trees and describe the criteria used to drive

their spatial decomposition and the data structures for representing them. We discuss the spatial

and topological queries supported by Tetrahedral trees in Section 5. In Section 6, we evaluate the

storage requirements and generation times of Tetrahedral trees, comparing with state-of-the-art

data structures. We then empirically evaluate the performance of Tetrahedral trees against the

state-of-the-art data structures in Section 7. We conclude in Section 8 by outlining directions for

future work.

2 BACKGROUND
In this section, we review some background notions about tetrahedral meshes. Let k be a non-

negative integer. A k-simplex σ is the convex hull of k + 1 independent points in Euclidean space.

These points are called the vertices of simplex σ and k is its dimension. A 0-simplex is a vertex, a

1-simplex is an edge, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. An h-face σ ′
of a

k-simplex σ is an h-simplex (0 ≤ h ≤ k) generated by h + 1 vertices of σ . Dually, σ is said to be a

coface of σ ′
. For instance, the triangles generated by three vertices of a tetrahedron σ are its 2-faces

and σ is a coface of each of these triangles.

A tetrahedral mesh Σ is a collection of vertices, edges, triangles and tetrahedra. In this paper, we

are concerned with tetrahedral meshes that are conforming, pure and have a manifold domain. In a

conforming mesh Σ, each face of a simplex in Σ also belongs to Σ and for each pair of simplices σ
and τ in Σ, σ and τ are either disjoint, or they intersect along a common face. In a pure tetrahedral

mesh, all vertices, edges and triangles in Σ are faces of a tetrahedron in Σ. Finally, a manifold
object is a subset of the Euclidean space for which the neighborhood of each internal point is

homeomorphic to an open ball, and the neighborhood of each boundary point to an open half ball.

The boundary of a simplex σ is the set of all faces of σ . Dually, the star of a simplex σ in a

tetrahedral mesh Σ is the set of its cofaces in Σ. For instance, the star of a vertex v is the set of
edges, triangles and tetrahedra incident in v. Two simplices are said to be mutually incident if one
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(a) (b) (c)

Fig. 1. Examples of topological relations. (a) Tetrahedron-Face boundary relation for tetrahedron t consists
of the four triangular faces { f1, f2, f3, f4}. (b) Vertex-Tetrahedron co-boundary relation for vertex v consists

(in this example) of its two incident tetrahedra {t1, t2}. (c) Tetrahedron-Tetrahedron adjacency relation for

tetrahedron t consists of its four adjacent tetrahedra {t1, t2, t3, t4}.

of them is a face of the other, while two h-simplices are j-adjacent, with 0 ≤ j < h, if they share a

j-face. Two vertices are called adjacent if they are the boundary vertices of an edge.

The connectivity among the simplices of a tetrahedral mesh is identified through so-called

topological (or connectivity) relations, which are based on the notions of incidence and adjacency.

Let us consider a tetrahedral mesh Σ and a p-simplex σ in Σ, with 0≤ p ≤ 3 (i.e., a vertex, edge,

triangle or tetrahedron). We have the following topological relations for σ [26]:

• boundary relation Rp,q , with 0 ≤ q < p, relates σ to its q-simplex faces within Σ.
• co-boundary relation Rp,q , with p < q ≤ 3, relates σ to its q-simplex cofaces within Σ.
• adjacency relation Rp,p relates σ to the p-simplices in Σ that are p-adjacent to σ .

An alternative notation for topological relations is to use the name of the involved p- (and
q-) dimensional simplices. Using this notation, the boundary relations for a tetrahedron σ are:

Tetrahedron-Face (TF (σ )), i.e., the set of triangles bounding σ (see Figure 1(a)), Tetrahedron-Edge
(TE(σ )), i.e., the set of edges on the boundary of σ , and Tetrahedron-Vertex (TV (σ )), i.e., the set of
vertices on the boundary of σ .

The co-boundary relations of a tetrahedron σ are empty since tetrahedra are the simplices

of highest dimension in a tetrahedral mesh, and, thus, are not on the boundary of any other

simplex. For a vertex v in a tetrahedral mesh, we have the following co-boundary relations: Vertex-
Tetrahedron (VT (v)) (see Figure 1(b)), Vertex-Face (VF (v)), and Vertex-Edge (VE(v)) which consist of

the tetrahedra, triangles and edges incident in v, respectively.
Adjacency relation Tetrahedron-Tetrahedron (TT (σ )) for a tetrahedron σ is the set of tetrahedra

sharing a triangle face with σ (see Figure 1(c)). The Vertex-Vertex (VV (v)) adjacency relation consists

of the set of vertices having an edge in common with a given vertex v. Topological relations for
faces (triangles) and edges are defined in a similar fashion.

Topological data structures explicitly encode a subset of all possible topological relations in a

tetrahedral mesh and are, thus, efficient in supporting navigation, but they are not well suited for

spatial queries, like point location or range queries. Conversely, spatial indexes are specifically

designed to efficiently support spatial queries but are not typically aware of mesh connectivity.

3 RELATEDWORK
In this section, we review data structures related to the new spatial indexes presented in this work.

3.1 Spatial indexes
Spatial indexes differ in their decomposition of the embedding space of the data, often into a

set of parallelepipeds, which we refer to as blocks. In an object-based decomposition, blocks are
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constructed by considering bounding regions of the entities they index, while in a space-based
decomposition, blocks are obtained by partitioning the embedding space. Space-based hierarchical
spatial indexes recursively subdivide the embedding space into non-overlapping blocks according

to a fixed pattern, where the children of a block partition the space associated with their parent
block. For this reason, hierarchical non-overlapping space-based decompositions are also known

as nested decompositions. The original data are generally associated with leaf blocks, i.e., those
without children, while the internal blocks are used to drive spatial queries.

The main classification of hierarchical spatial indexes is into those using regular refinement and

those using bisection refinement [11]. Regular refinement of hyper-rectangular blocks generates

quadtrees [5], in 2D, and octrees, in 3D, while the bisection refinement of axis-aligned hyper-

rectangles bisected by axis-aligned hyperplanes generates kD-trees. These decompositions have

been originally defined for indexing point data and subdivide the space into blocks of equal size

(generating PR quadtrees and PR kD-trees, where PR stands for Point Region [64]), or using the

positions of the points to define subdivision planes (generating Point quadtrees and kD-trees [36]).

Octree-based decompositions for points are widely used for indexing and analyzing Light Detection

and Ranging (LiDAR) acquisitions [31, 58, 74, 79]. While there is a vast literature on spatial indexes,

we review only those relevant to the work presented in this paper. Please see [80] for an extensive

treatment of the subject.

The class of Polygonal Map (PM)-quadtrees [81] extends PR-quadtrees to represent polygonal

maps, viewed as collections of edges in 2D space. There are four variants, namely, the PM1-quadtree,
the PM2-quadtree, the PM3-quadtree and the randomized PMR-quadtree. They all maintain a list of

edges in the leaf blocks but differ in their subdivision rules. A PM3-quadtree has the same structure

as the PR-quadtree built on the vertices of the polygonal map, but, in addition, it stores all the edges

that intersect each leaf block. The other PM-quadtrees apply subdivision based on the number and

configuration of edges in a block. The subdivision rule for the PM1 and PM2-quadtrees is applied

recursively during the insertion of an edge while that of the PMR-quadtree [61] is only applied once

per insertion. This gives rise to a probabilistic behavior where the order in which the segments

are inserted affects the shape of the resulting tree. As proven in [54], the number of blocks in a

PMR-quadtree is proportional to the number of line segments and is independent of the maximum

depth of the tree.

The first attempt to extend a PM-quadtree to index triangle meshes is the PM2-Triangle quadtree
[24], which consists of a spatial index superimposed on a topological data structure (in this case the

IA data structure [65]). The former is used to execute spatial queries, while topological queries are

answered by working directly on the IA data structure. In a PM2-Triangle quadtree, each leaf block

contains at most one vertex, which dramatically limits the scalability of this representation. To

overcome this issue, an extension of a bucketed PM3-quadtree to triangle meshes has been recently

proposed in [34]. This representation encodes minimal connectivity for a triangle mesh combined

with a spatial index. The representation is minimal in the sense that each triangle encodes only the

vertices in its boundary, thus enabling the efficient extraction of the full connectivity locally, while

the spatial index enables the navigation of the mesh at a global scale and allows for an efficient

execution of spatial queries.

The PM-quadtree family has also been extended to encode polyhedral surfaces [15, 60, 80],

using octrees to index the boundary cells of these objects. The leaf blocks of these PM-octrees
either explicitly store the boundary elements present in the block [15], or the plane equations

of the indexed elements [60]. Space Partition (SP)-octrees [14] maintain information within their

internal blocks in addition to their leaf blocks. Thus, internal blocks provide an approximate object

description. The subdivision of the space stops when the object portion lying in the block can be

defined as the intersection of planes (i.e., it is locally convex, or locally concave).
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Object-based hierarchical spatial indexes are widely used in database management systems

(DBMS) such as Oracle Spatial [63] and PostGIS, a spatial extension for PostgreSQL [72], to encode

collections of disconnected objects in space. The most representative of such spatial indexes are

R-trees [45] and their numerous variants which can be defined in terms of the DBMS’s underlying

B-tree representation [22]. R-trees hierarchically group nearby objects by their minimum bounding
rectangles, which can overlap. The R-tree [45] is a dynamic data structure, i.e., the indexed objects

are inserted one-by-one, but numerous variants have been defined with specific packing techniques,

i.e., inserting an a-priori known static set of objects into the structure to optimize the storage

overhead and the retrieval performance. The dynamic family includes the Packed R-tree [77] and
the R+-tree [84], while the static family includes the P-tree [52], the R∗-tree [7] and the Priority
R-tree [4].

Spatial indexes have also been used in the scientific visualization literature to probe field data [39,

53]. Langbein et al. [53] combine a kD-tree to index the vertices of a polyhedral mesh with a

topological data structure encoding the Cell-Vertex and Vertex-Cell relations of the mesh. During

a point location query, the kD-tree is used to locate a vertex near the query point. A polyhedron

incident to this vertex is then used to navigate through the mesh towards the query point. The

spatial index in the celltree data structure [39] is based on the bounding interval hierarchy scheme.

A celltree is a binary tree of axis-aligned boxes generated by bisection refinement, similar to a

kD-tree. However, unlike a kD-tree, the child blocks do not form an exact partition of their parent.

Rather, during refinement, the cells in a block are disjointly distributed into its two children and

each block maintains the bounding box of its indexed cells. Each cell is indexed in a single leaf

block, but answering a point location query requires visiting multiple branches of the celltree.

3.2 Topological data structures for tetrahedral meshes
There has been much research in designing efficient topological representations for triangle meshes

[26] and significantly less for tetrahedral meshes. The Indexed mesh data structure is the most

compact existing data structure for a tetrahedral mesh. It uses an array to store the coordinates of

the vertices, and a separate array to encode the Tetrahedron-Vertex (TV ) relation, i.e., the indices of

the four vertices of each tetrahedron. This data structure is sufficient for rendering and interpolation

within each tetrahedron, but does not support an efficient navigation of the mesh connectivity.

The Indexed data structure with Adjacencies (IA data structure) [62, 65] extends the indexed data

structure by also encoding the Tetrahedron-Tetrahedron (TT ) relation and a partial Vertex-Tetrahedron
(VT ∗

) relation, i.e., one tetrahedron in the star of each vertex instead of the entire set of incident

tetrahedra. This enables the efficient extraction of all topological relations.

The Sorted Opposite Table (SOT) data structure [44] extends the Corner Table (CoT ), defined in

[76] for triangle meshes, to tetrahedral meshes, and introduces a compact version of the IA data

structure. The SOT data structure explicitly encodes only theTT relation in an array, and implicitly

encodes the VT relation by rearranging the order of the tetrahedra within the tetrahedra array.

The TV relation is implicitly represented as well, and it can be reconstructed at run-time through a

traversal of TT relation. Since modifications to the mesh require non-local reconstructions of the

associated data structures, the SOT data structure is most suitable for static meshes.

The PR-star octree [93] is a hierarchical topological data structure for tetrahedral meshes which

has recently been extended to encode simplicial complexes in arbitrary dimensions [35]. Although

it uses a spatial index to encode the mesh, it does not support spatial queries. Specifically, the leaf

blocks of the tree encode only the tetrahedra incident in their indexed vertices and are used to

reconstruct the local mesh connectivity. It has been proven to be effective within applications, such

as local curvature estimations, mesh validation and simplification [93], and morphological feature

extractions [94].

ACM Trans. Spatial Algorithms Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 1:7

Out-of-core approaches based on topological data structures have been proposed for the efficient

execution of spatial queries [47, 48, 66] on unstructured tetrahedral meshes. Papadomanolakis et

al. [66] present a representation optimized for point and range queries on tetrahedral meshes in a

database. The query processing technique defined for spatial queries, called Directed Local Search
(DLS), takes advantage of mesh connectivity, and uses a B-tree (provided by the underlying DBMS)

for indexing the tables encoding Tetrahedron-Vertex (TV) and Tetrahedron-Tetrahedron (TT) relations.
This data structure is equivalent to the IA data structure and suffers from the same limitations at

answering spatial queries, i.e., it is guaranteed to succeed only when the domain of the tetrahedral

mesh is convex.

In [47, 48] a relational DBMS supporting finite element analysis operations is described, and a

data structure similar to the indexed data structure is proposed, encoding the vertices, the edges

and tetrahedra of a tetrahedral mesh, plus the Tetrahedron-Vertex (TV ), the Tetrahedron-Edge (TE)
and Edge-Vertex (EV ) relations (i.e., the vertices and edges in the boundary of each tetrahedron,

and the vertices in the boundary of each edge).

4 TETRAHEDRAL TREES
Tetrahedral trees are a family of spatial indexes for tetrahedral meshes based on the recursive

subdivision of an initial cubic domain containing the mesh through median planes into eight or two

blocks for octrees and kD-trees, respectively. The specific indexes differ in the criterion guiding

the subdivision, and in the information stored in the leaf blocks. We use the generic name tree to
indicate both octrees and kD-trees.

We consider a block to be closed at the three square faces incident in its lower-left corner, and open
at the remaining faces. More precisely, a block consists of all points (x ,y, z) such that x1 ≤ x < x2,
y1 ≤ y < y2, and z1 ≤ z < z2, where (x1,y1, z1) is the lower-left corner and (x2,y2, z2) is the
upper-right corner of the block. Exceptionally, for blocks whose x2, y2 or z2 lies on the domain

boundary, the corresponding faces are considered closed. In all cases, an empty block is a leaf block

which does not intersect any tetrahedra from the mesh.

In Section 4.1, we define subdivision rules driving our spatial subdivisions, and in Section 4.2,

we describe the Tetrahedral trees resulting from these subdivisions and provide algorithms for gen-

erating them. In Section 4.3, we present the data structures we developed for encoding Tetrahedral

trees.

4.1 Subdivision rules
We define three subdivision rules for generating Tetrahedral trees over tetrahedral meshes: one

based on the vertices and two on the tetrahedra of tetrahedral mesh Σ. These rules are bucketed
extensions of rules in the PR and PM families that have been shown to be more effective on points,

and line segments compared with the original PR- and PM-quadtrees. Specifically, our vertex rule

is a bucketed extension of the Point-Region (PR) rule on 2D and 3D points in space, while the

two rules on tetrahedra are bucketed extensions of those underlying PM2-quadtrees and octrees

and PMR-quadtrees, respectively. As we demonstrate in Section 6, bucketing is an important

aspect of our rules, as it enables the indexing of much larger datasets, a clear limitation for all the

rules available in the literature. In our design phase we also considered other options, such as a

subdivision rule based on the centroid of each tetrahedron where each tetrahedron is indexed by a

single leaf block. After an initial evaluation, we discarded these since queries could no longer be

satisfied entirely by the geometry within a single leaf block.

Vertex-based subdivision rule. This subdivision rule considers a threshold, kV , on the number of

vertices indexed in a block b:
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(a) (b)

Fig. 2. (a) A situation in which a leaf contains more than kT = 4 tetrahedra (shown in 2D). All tetrahedra are

incident in the red vertex on the block boundary. (b) If we divide the block, we create another block in the

same situation, leading to an infinite subdivision.

(i) a leaf block b may index up to kV vertices;

(ii) if a leaf block b indexes more than kV vertices it is recursively split until condition (i) is met.

Tetrahedron-based subdivision rule. This subdivision rule considers a threshold value, kT , on the

number of tetrahedra which can intersect a leaf block b:
(i) a leaf block b may index up to kT tetrahedra, unless the next condition is verified;

(ii) a leaf block b may index more than kT tetrahedra if and only if all tetrahedra intersecting b
are incident in a common vertex v, which can be either inside or outside b;

(iii) otherwise, the block is recursively split until either condition (i) or (ii) is met.

Rule (ii) avoids splitting a block b when the same configuration would be repeated in one of the

children. Figure 2 illustrates this problem in 2D. If we split the leaf block in Figure 2(a), we get the

four blocks in Figure 2(b), where the bottom-left leaf block has the same configuration that started

the subdivision process.

Randomized tetrahedron-based subdivision rule. This subdivision rule is still based on a splitting
threshold value, kT , on the number of tetrahedra. A block b is subdivided if it intersects more than

kT tetrahedra, but, unlike in the other two subdivision rules, this is done only once per insertion.

It extends the principle underlying PMR-quadtrees [61], and it is guaranteed to result in a finite

number of subdivision steps.

4.2 The Tetrahedral trees family
Each member of the Tetrahedral Tree family pairs an underlying tree topology (octree or kD-tree)

with one or more subdivision rules defined in the previous section, which also determines what is

stored in its leaf blocks. We consider eight members of the Tetrahedral tree family defined by two

tree topologies and four rule sets, as summarized in Table 1.

P-Ttree. A Point-based Tetrahedral tree uses the vertex-based subdivision rule. It is a direct

extension of a bucketed PR-quadtree/octree or kD-tree [64], since the subdivision is based only on

the vertices of the tetrahedral mesh. Each leaf block b stores a reference to the vertices inside it and
to the tetrahedra intersecting it. Each vertex always belongs to a single leaf, while a tetrahedron

σ belongs to all leaf blocks that are intersected by σ . A leaf block in a P-Ttree may contain an

arbitrary number of tetrahedra and there may exist leaf blocks which do not contain vertices, but

only tetrahedra intersecting them.

Given a user-defined threshold kV , we generate a P-Ttree by inserting the vertices one at a time,

only visiting the internal blocks that geometrically contain each vertex v. When a leaf block b is
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Table 1. Leaf block thresholds used to build each type of Tetrahedral tree and spatial information encoded

within each leaf block.

index
threshold applies to encodes list of

vertices tetrahedra vertices tetrahedra
(kV ) (kT ) (bV ) (bT )

P-Ttree ✓ ✓ ✓

PT-Ttree ✓ ✓ ✓ ✓

T-Ttree ✓ ✓

RT-Ttree ✓ ✓

reached, v is added to b, and the overflow condition for b is checked. If b contains more than kV
vertices, it is recursively split until an overflow occurs in the resulting leaf blocks. After inserting

all vertices into the P-Ttree, the refinement is fixed. The tetrahedra of T are then inserted into the

leaf blocks that intersect them without triggering further refinements.

T-Ttree. A Tetrahedron-based Tetrahedral tree uses only the tetrahedron-based subdivision rule.

As such, it is a direct generalization of the PM2-quadtree/octree to tetrahedral meshes, adding also

a bucketing threshold on the number of tetrahedra per block. The subdivision of a block b is driven
by the tetrahedra intersecting b. Each leaf block b stores only the set of tetrahedra intersecting it.

The generation strategy for T-Ttrees is different from the one for P-Ttrees, as here we add

tetrahedra directly, without previously inserting their vertices. Then, given a tetrahedron σ , the
leaf blocks that intersect σ are identified, and σ is added to these blocks. For each of such block b,
if b contains a number of tetrahedra which is less or equal to the threshold value kT , σ is added

to b. Otherwise, it is checked if all tetrahedra intersecting b plus tetrahedron σ are incident in a

common vertex. If the condition above is satisfied σ is inserted in b, otherwise b is split and all

tetrahedra of b plus σ are recursively re-inserted in all child blocks intersecting them.

PT-Ttree. A Point-Tetrahedron-based Tetrahedral tree uses both the vertex-based and the tetrahedron-
based subdivision rules. It generalizes PM2-quadtree/octree to tetrahedral meshes adding bucketing

thresholds on the number of vertices and of tetrahedra. The subdivision of a block b is determined

by the vertices inside b and by the tetrahedra intersecting b. Similarly to a P-Ttree, each leaf block

stores references to the vertices and tetrahedra intersecting it.

In the generation of a PT-Ttree, the vertices are first inserted as in the P-Ttree with vertex

threshold kV . Then, the tetrahedra are inserted as in T-Ttree with a tetrahedra threshold kT .

RT-Ttree. A Randomized-Tetrahedron Tetrahedral tree applies the randomized tetrahedron-based
subdivision rule. As such, it extends the PMR-quadtree to tetrahedra introducing also a splitting

threshold guiding block subdivision. Unlike the previous three indexes, the final shape of the tree

depends on the insertion order of the tetrahedra. Similarly to a T-Ttree, each leaf block b stores
the set of tetrahedra intersecting b. Note that in a RT-Ttree the number of tetrahedra associated

with a leaf block can be greater than the splitting threshold kT . It has been proven in [61] for a

PMR quadtree built on the edges of a map that the number of edges intersected by a leaf block

cannot exceed the sum of the splitting threshold and of the depth of the leaf block. The same result

holds for an RT-Ttree, i.e., the number of tetrahedra in a leaf block of a RT-Ttree can be at most

equal to d + kT , where d is the depth of the leaf and kT is the splitting threshold. For example, if we

build a RT-Ttree in the 2D example of Figure 2, the block in Figure 2(a) is split after inserting the
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fifth triangle, since kT = 4, resulting in the subdivision shown in Figure 2(b). Note that the bottom

left leaf block intersects kT + d = 4 + 1 triangles.

In the generation of an RT-Ttree, for each tetrahedron σ , the leaf blocks intersecting σ are

located. For each such leaf block b, if b contains a number of tetrahedra which is less than or equal

to threshold kT , then σ is added to b. Otherwise, b is split, and all tetrahedra, plus σ , are added to

every child block intersecting them.

4.3 Encoding Tetrahedral trees
A Tetrahedral tree consists of three components:

• a tetrahedral mesh Σ,
• the tree structure of the containment hierarchy, and

• the information associated with the leaf blocks.

The cost for encoding the tetrahedral mesh is the same as for all Tetrahedral trees, while the cost of

the other two components is specific for each of them. The connectivity of the tetrahedral mesh Σ
is encoded in an indexed mesh data structure, which uses two arrays V and T, for the vertices and
tetrahedra, respectively. The vertex array encodes the spatial embedding of mesh Σ by storing the

three vertex coordinates for each vertex of Σ. The tetrahedron array encodes, for each tetrahedron

σ in Σ, the indexes of its four vertices in the vertex array.

The tree describing the nesting structure of the index is encoded using an explicit pointer-based

tree data structure, in which each block b of the tree is represented with a single data type. Our

encoding of the tree hierarchy is independent of the tree topology, i.e., it can be used on octree and

kD-tree decompositions without any modification. Each block b of a Tetrahedral tree contains a
pointer to its parent block and to an array of children. This latter is empty if b is a leaf block. For
all Tetrahedral trees, each leaf block b also contains an array bT of references to the tetrahedra

intersecting b. The leaf blocks in a P-Ttree and a PT-Ttree also contains an array bV of references

to the vertices indexed by b.
We encode these local leaf block vertex and tetrahedra arrays using the approach proposed in

[35] for a topological data structure for simplicial complexes in arbitrary dimensions based on

vertex clustering. This approach compresses the index arrays using sequential range encoding (SRE),
a variant of run-length encoding [49] that represents each run of consecutive indexes with a pair of

integers encoding the starting index of the run and a count of the number of elements in the run.

With this encoding, we can easily intersperse individual indices (encoded using a positive integer)

and runs of indices (which begin with a negative integer) within the same array (see Figure 3(a)).

The effectiveness of this compression increases when paired with a procedure that reorders the

mesh vertices and elements to better exploit their locality (see [35] for additional details). In our

case, we use the spatial locality induced by the tree decomposition to reorder the mesh and leaf

block arrays after we construct the index. That is, a run represents a set of vertices or tetrahedra

indexed by the same leaf block or within neighboring leaf blocks (i.e., those indexed by the same

set of leaf blocks). Since each vertex is indexed in a single leaf block, we can represent each local

vertex array with a single run (i.e. using just two integers).

The novelty of our approach lies in applying the SRE compression method, originally defined

for a topological data structure to a spatial index and in exploiting properties of SRE to accelerate

query response times (see Section 5). As we demonstrate empirically in Section 6, SRE compression

retains its effectiveness for spatial indexes underlying Tetrahedral Trees, where each tetrahedron

can be indexed by an arbitrary number of leaf blocks (rather than at most four as in [35]).
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Fig. 3. In a Sequential-Range Encoded (SRE) block, runs of contiguous tetrahedron indices are compressed

into a pair of integers encoding the starting index and length of the run. This block (shown in 2D) contains

163 tetrahedra with indices {32-34, 39, 46-62, 67-81, 83-94, 132-231, 252-266} using an array of length 13.

(a) Indices of tetrahedra within a block (dotted gray square) and corresponding compressed SRE representation

of the runs. (b) Bounding boxes of the runs can be used to accelerate spatial queries. Note that entries within

a run are not necessarily in the same connected component of the mesh.

5 QUERYING A TETRAHEDRAL TREE
In this section, we discuss how both spatial and topological queries are implemented within

Tetrahedral trees. These are the building blocks for many higher level algorithms on tetrahedral

meshes.

5.1 Spatial queries
The two most common spatial queries on a tetrahedral mesh Σ are:

Point location query. Given a query point p, find the tetrahedron σ in Σ containing p. In case several

tetrahedra contain p (i.e., p lies on a shared vertex, edge, or triangular face), just one such

tetrahedra is reported.

Range query. Given an axis aligned query box ρ, find the (possibly empty) set of all tetrahedra in Σ
that have a non-empty intersection with ρ.

In all variants of the Tetrahedral tree, our querying algorithms perform a top-down tree traversal

to locate the leaf block containing query point p, or the leaf blocks intersecting query box ρ. Each
target leaf block indexes a set of tetrahedra which we check against point p, or box ρ, to decide

whether it must be reported in the answer. Since these fine-grained geometric tests consume the

bulk of our query response time, we attempt to reduce the number of these tests by exploiting the

spatial locality of the index runs within our SRE index lists. Specifically, for each run of consecutive

tetrahedra in the index list, we first compute the bounding box of its vertices and test this against

the query geometry before applying the more expensive geometric tests on the tetrahedra (see
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(a) Point query 1 (b) Point query 2 (c) Range query

Fig. 4. Run-aware point location and range queries on an SRE compressed block (shown in 2D with black

circular query points in (a) and (b) and rectangular query range in (c)). Geometry in runs whose bounding

boxes do not intersect the query point or box (hollow triangles) can be immediately discarded. The remaining

candidates (filled triangles) require further bounding box and query-dependent geometric tests to find the

desired triangles (dark red filled triangles).

Algorithm 1 point_location(b,p)

Input: b is a leaf block of the tree, and bT is the tetrahedra array indexed by b
Input: p is a query point

1: for each entry r in bT do
2: if r is a run then
3: extract the bounding box bbox of r
4: if bbox contains p then
5: for each tetrahedron σ in r do
6: if σ contains p then
7: return σ
8: else if r contains p then // r is a tetrahedron reference
9: return r

Figure 3(b)). As we demonstrate in Section 7, this optimization yields a significant (query-dependent)

speedup in execution times.

Algorithm 1 provides a pseudo-code description of our run-aware point location algorithm within

a leaf block b containing the query point. If the current entry is a run r of tetrahedra, we compute its

bounding box bbox (row 3) and test it against the query point p (row 4). If p intersects bbox , then we

test the individual tetrahedra belonging to the run (rows 5–7), otherwise we proceed with the next

entry of the array. Figure 4(a) and (b) present examples of our run-aware point location query. For

simplicity, we use a 2D example, in which we consider a triangle instead of a tetrahedral mesh. As

we iterate through the index array, we compute the bounding box of each run (see Figure 3(b)) and

discard triangles in runs whose bounding box does not intersect the query point (hollow triangles

in Figure 4(a) and (b)). We then execute point-in-triangle tests only on those triangles belonging

to the runs whose bounding box contains p and on those which do not belong to any run (filled

triangles in Figure 4(a) and (b)).

ACM Trans. Spatial Algorithms Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Tetrahedral Trees: A Family of Hierarchical Spatial Indexes for Tetrahedral Meshes 1:13

Algorithm 2 range_qery(b,ρ,result)

Input: b is a leaf block in the hierarchy, with bT the tetrahedra array indexed by b
Input: ρ is a query box

Input: result is the result list containing the tetrahedra intersecting ρ
1: if b is completely contained in ρ then

// simply add the tetrahedra to the result
2: for each tetrahedron σ in bT do
3: add σ to result
4: else
5: for each entry r in bT do
6: if r is a run then
7: extract the bounding box bbox of r
8: if bbox is completely contained in ρ then

// expand the run by adding the tetrahedra to the result
9: for each tetrahedron σ in r do
10: add σ to result
11: else if bbox intersects ρ then // expand the run
12: for each tetrahedron σ in r do
13: if σ intersects ρ then
14: add σ to result
15: else if r intersects ρ then // r is a tetrahedron reference
16: add r to result

Algorithm 2 provides pseudo-code description of our run-aware range query within a leaf block

b. Before testing any of the tetrahedra in b against the query box ρ, we check if b is completely

contained in ρ, thus executing just one box-in-box test (row 1). If so, we directly add all of its

tetrahedra to the output, without executing any tetrahedron-in-box tests. Otherwise, for each run r ,
we test if r is completely contained in ρ (row 8), or if ρ and r ’s bounding box intersect (row 11). In

the first case, we directly add all the tetrahedra in the run to the output list without any additional

tests (rows 9-10). In the second case, we test each tetrahedron in the run (rows 12–14). If the current

element is not a run, we execute a tetrahedron-in-box test on it (rows 15–16). Figure 4(c) shows an

example range query on the block from Figure 3.

5.2 Topological queries
In Tetrahedral trees, boundary relation Tetrahedron-Vertex (TV) is stored globally for each tetrahe-

dron in the mesh as part of the underlying indexed mesh representation. Coboundary and adjacency

relations can be generated on the fly either for the whole domain, or inside a region of interest.

We describe here, for brevity, only the algorithms for answering topological queries in a region of

interest, which are formulated as follows:

Range topological query. Given a query box ρ, compute the desired topological relations for the

(possibly empty) set of simplices from the mesh that intersect ρ.

The algorithm for identifying the portion of the index and thus the tetrahedra involved in the

query is very similar to the one for the range query (as described in Section 5.1). As examples, we

will focus on the range Vertex-Tetrahedron (VT ) query and the range Tetrahedron-Tetrahedron (TT )
query. For efficiency, in both queries we use the run-aware optimizations described in Section 5.1.
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Algorithm 3 extract_vt(b,ρ,VTlist )

Input: b is a leaf block in the hierarchy intersecting ρ, with bT the tetrahedra array of b
Input: ρ is a query box

Input: VTlist is the list of all VT(v), for v in ρ
1: for each tetrahedron σ in bT do
2: for each vertex v in TV(σ ) do
3: if v in b and ρ contains v then
4: add σ to VT(v) in VTlist

A range Vertex-Tetrahedron (VT ) query returns, for each vertex in the specified range, the

tetrahedra incident in it. Algorithm 3 provides a pseudo-code description of the algorithm for

performing the query. The algorithm considers a leaf block b and extracts the vertices of the

boundary of each tetrahedron σ in b (using Tetrahedron-Vertex (TV ) relation). If a vertex v is

indexed by b and is contained in box ρ, the index of σ in T is added to the list of tetrahedra in the

VT list of v.
A range Tetrahedron-Tetrahedron (TT ) query returns, for each tetrahedron σ in the given range,

the tetrahedra sharing a face with σ . The algorithm iterates over the leaf blocks intersecting query

box ρ. For each such leaf block b, and for each tetrahedron σ in b that intersects ρ, it first extracts
the faces of σ from TV(σ ) as triples of vertex indices. For each face f of σ , an entry is inserted

in a list L consisting of the three vertices of f plus the index of σ in the global tetrahedron array.

Lexicographically sorting list L pairs the tetrahedra that have a face in common. The TT relation is

then built by iterating over L: for every pair of consecutive entries in L having the same triple of

vertices, the two tetrahedra σ1 and σ2 in the two entries are marked as face-adjacent.

6 EVALUATION OF STORAGE COSTS AND GENERATION TIMES
In this section, we present an experimental evaluation of the storage cost and of the generation time

of the different Tetrahedral trees over a testbed of datasets constructed using different threshold

parameters kV and kT for the number of vertices and tetrahedra allowed in a leaf block of the

tree. Our evaluation considers limit cases for the thresholds (i.e., 1 or ∞) as well as a statistic

tavд representing the average number of leaf blocks in which a tetrahedron is indexed. This is an

important indicator of the quality of the spatial decomposition, as it highlights if the decomposition

is either too coarse (i.e., each tetrahedron appears in very few leaf blocks) or too fine (i.e., each

tetrahedron intersects a large number of leaf blocks). We also compare Tetrahedral trees against

representatives of the twomost commonly used data structures for spatial queries: the IA topological

data structure [65] and the R
∗
-tree [7]. To evaluate the storage and computational benefits of

the run-based leaf block encoding, we compare Tetrahedral trees with this encoding against an

uncompressed variant that does not compress the vertex and tetrahedron arrays in the leaf blocks.

This is equivalent to the data structure in [25].

We have performed our experiments on six unstructured tetrahedral meshes ranging in size from

4 to 30 million tetrahedra (see Figure 5), originating from biomedical and engineering applications.

The bonsai, vismale and foot datasets were derived from a regular grid using regular simplex
bisection [92], leading to adaptive semi-regular tetrahedral meshes. They were then made irregular

through a simplification process, based on half-edge collapse, that removed approximately 15% of

the vertices. The remaining meshes (rbl, f16, san fernando) are originally irregular meshes.

For every mesh, we have built sixteen Tetrahedral trees (see Table 2). For each of the four

subdivision rules, we have generated two spatial indexes based on octrees, and two spatial indexes
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(a) rbl (b) f16 (c) san fernando

(d) bonsai (e) vismale (f) foot

Fig. 5. Tetrahedral meshes used in the experiments.

based on kD-trees, by using two different values of the relevant thresholds, kV and/or kT depending

on the specific subdivision rules. The two thresholds have been selected in order to obtain similar

values of tavд (see tavд column in Table 2) for the octree and the kD-tree subdivision rules, thus

allowing a direct comparison between them. We have chosen the values in such a way that the tree

built with the larger threshold contains roughly half as many blocks of the other tree. With the

values we used for kT , the storage requirements of RT-Ttrees and T-Ttrees are the same and, thus,

Table 2 shows only those of T-Ttrees. The hardware configuration used for these experiments is

an Intel CPU i7-3930K, at 3.2 Gigahertz, and with 64 gigabytes of RAM.

6.1 Experimental evaluation of Tetrahedral trees
We begin by comparing the storage requirements for the different Tetrahedral tree variants. In

Table 3, the columns labeled tree show the storage cost of the spatial index, while those labeled tot
also take into account the storage of the underlying tetrahedral mesh.

We first compare the SRE-compressed Tetrahedral trees against their corresponding uncom-

pressed Tetrahedral trees. Thanks to the spatial reorganization and SRE compression, the total size

of the tetrahedron arrays in the leaf blocks is an order of magnitude smaller than its uncompressed

counterparts. In comparison to uncompressed trees, Tetrahedral trees save, on average, 90% of

the storage for encoding the spatial index. This translates to a 30% savings in overall storage

requirements. The remainder of this section will focus on the SRE-compressed Tetrahedral trees.

We will return to the uncompressed trees in our analysis of query performance in Section 7.

Comparing the storage overhead of the Tetrahedral trees spatial index (in column tree) against
that of the indexed mesh (in column Base Mesh) further highlights the benefits of our run-based
SRE encoding. Even though each tetrahedron is indexed by approximately two leaf blocks (see

tavд in Table 2), the overhead of the spatial index component of Tetrahedral trees remains quite

low. Specifically, Tetrahedral trees built using the smaller threshold values have only about 5-10%

overhead while those with built with larger thresholds have about half of that, i.e., 3-5% overhead.

Next, comparing the different tree topologies, we observe that, in general, octrees tend to be more

compact for higher thresholds, while kD-trees are more compact for smaller ones, with differences

ranging from around 5% to 35%. This trend is not only correlated to the bucketing threshold and to
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Table 2. Statistics about the experimental datasets and Tetrahedral trees built on them. |b| is the total number

of blocks, while tavд represents the average number of leaf blocks in which a tetrahedron is indexed. For

the chosen parameters, RT-Ttrees and T-Ttrees are equivalent, and thus we report only the statistics of

T-Ttrees.

Data Σ
kV kT

indexes

P-Ttree PT-Ttree T-Ttree

|V| |T| |b| tavд |b| tavд |b| tavд

r
b
l

730K 3.89M

octree

100 1000 32.6K 2.15 37.6K 2.25 34.9K 2.22

200 1200 16.8K 1.86 22.9K 1.99 22.9K 1.99

kD-tree

50 500 50.1K 2.15 57.5K 2.22 55.1K 2.20

100 700 26.2K 1.90 36.9K 2.04 36.7K 2.04

F
1
6

1.12M 6.35M

octree

200 1200 24.0K 2.02 38.6K 2.24 38.5K 2.24

400 1600 12.8K 1.79 28.3K 2.10 28.3K 2.10

kD-tree

100 600 35.2K 2.00 68.3K 2.29 68.3K 2.29

150 800 23.7K 1.86 48.7K 2.14 48.7K 2.14

s
a
n
f
e
r
n

2.46M 14.0M

octree

125 1200 78.3K 2.08 87.4K 2.14 63.9K 2.02

300 1800 34.9K 1.85 35.6K 1.85 35.6K 1.85

kD-tree

50 800 141K 2.11 142K 2.11 101K 2.00

125 1200 653K 1.84 68.1K 1.86 58.5K 1.81

b
o
n
s
a
i

4.25M 24.4M

octree

55 550 252K 2.07 368K 2.23 360K 2.22

150 800 115K 1.86 142K 1.92 142K 1.92

kD-tree

50 300 263K 1.99 535K 2.29 535K 2.29

75 600 173K 1.85 211K 1.91 211K 1.91

v
i
s
m
a
l
e

4.65M 26.5M

octree

50 500 318K 2.14 418K 2.26 416K 2.25

200 800 124K 1.88 141K 1.92 141K 1.92

kD-tree

30 300 429K 2.17 553K 2.28 552K 2.28

75 600 187K 1.86 231K 1.92 231K 1.92

f
o
o
t

5.02M 29.5M

octree

55 600 339K 2.11 426K 2.21 375K 2.15

115 1000 125K 1.86 128K 1.86 127K 1.86

kD-tree

35 350 388K 2.11 482K 2.18 480K 2.18

75 700 192K 1.84 195K 1.85 194K 1.84

the corresponding spatial decomposition, but also, and more interestingly, to the effectiveness of

the compression of sequential index runs.

Finally, comparing the different tree variants, P-Ttrees, PT-Ttrees and T-Ttrees, we observe

that, for similar values of tavд , the octree-based P-Ttree is generally the most compact. For example,

P-Ttrees require half the storage on the bonsai and f16 datasets as the others. However, for the

san fernando dataset, T-Ttrees are more compact, requiring about 5% to 50% less storage.

In summary, we observe that the SRE compression allows an order of magnitude reduction

compared to uncompressed trees. On SRE-based trees, the use of either an octree or a kD-tree does

not influence the storage cost significantly. Even through P-Ttrees are often the most compact,

the differences in storage cost among the four indexes are quite small.

Considering generation times (see Table 4), we observe that creating the initial spatial decom-

position accounts for up to 90% of the overall generation times. There is little difference among

the various subdivision strategies (see column tree); P-T and RT-Ttrees are about 5% faster than

T-T and PT-Ttrees due to their simpler subdivision rule. Conversely, the compression stage for a
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Table 3. Storage costs, expressed in megabytes (MBs), for Tetrahedral Trees (based on the thresholds shown

in Table 2), IA data structure and R
∗
-trees. Column Base mesh shows the tetrahedral mesh storage, column

conn. shows the storage required to encode the connectivity for IA, column tree shows the storage to encode

the index for Tetrahedral Trees and R
∗
-trees. uncompr. and SRE columns show the storage for uncompressed

and SRE-compressed Tetrahedral trees. For R
∗
-trees, we also show the branching factor (bF column).

Data Base

Tetrahedral trees

IA R∗-tree
mesh index

octree kD-tree

uncompr. SRE uncompr. SRE

tree tot tree tot tree tot tree tot conn. tot bF tree tot

r
b
l

76.0

P-Ttree

36.2 112 5.19 81.2 37.0 113 5.97 82.0

62.1 138

4 329 405

31.1 107 2.46 78.5 32.2 108 3.13 79.2

PT-Ttree

37.9 114 6.21 82.2 38.3 114 6.95 83.0

8 91.9 168

33.3 109 3.58 79.6 34.7 111 4.53 80.5

T-Ttree

34.1 110 5.49 81.5 34.6 111 6.13 82.1

16 46.7 123

30.2 106 3.32 79.3 31.5 107 4.10 80.1

f
1
6

123

P-Ttree

54.3 177 5.68 128 54.3 177 5.74 128

101 224

8 137 259

48.3 171 3.31 126 50.3 173 4.05 127

PT-Ttree

60.4 183 8.70 131 62.9 185 10.4 133

16 70.7 193

56.4 179 6.64 129 58.2 181 7.75 130

T-Ttree

55.6 178 8.25 131 57.8 180 9.66 132

32 45.5 168

51.8 174 6.32 129 53.4 176 7.19 130

s
a
n
f
e
r
n

270

P-Ttree

124 394 12.3 282 128 398 16.3 286

223 492

8 318 588

109 379 5.81 275 111 380 7.68 277

PT-Ttree

127 397 13.6 283 129 398 16.4 286

16 186 456

110 380 5.93 276 112 381 8.04 278

T-Ttree

110 380 9.63 279 110 380 10.7 280

32 112 381

100 370 5.52 275 98 368 6.41 276

b
o
n
s
a
i

470

P-Ttree

221 691 34.7 505 214 684 27.5 498

389 859

16 288 758

195 665 16.3 486 197 667 18.2 488

PT-Ttree

241 711 50.3 520 254 724 55.0 525

32 183 653

201 671 19.9 490 204 674 22.2 492

T-Ttree

219 689 45.3 515 231 701 48.9 519

64 136 606

183 654 18.2 488 185 655 19.8 490

v
i
s
m
a
l
e

511

P-Ttree

249 760 43.8 555 257 769 44.4 556

423 934

16 312 823

214 725 17.7 529 215 726 19.9 531

PT-Ttree

265 777 57.1 568 274 785 57.1 568

32 198 710

219 730 19.9 531 223 734 24.3 536

T-Ttree

242 754 52.1 563 250 761 50.7 562 64 147 659

199 711 18.3 530 203 714 21.6 533

f
o
o
t

565

P-Ttree

272 838 47.3 613 274 839 40.2 605

470 1035

32 221 786

234 799 18.0 583 235 801 20.3 586

PT-Ttree

288 853 59.1 624 287 852 50.4 616

64 164 729

235 800 18.4 584 236 801 20.6 586

T-Ttree

255 821 48.2 613 262 827 44.8 610

128 138 703

214 779 16.8 582 214 780 18.3 584

P-T index is the fastest, requiring 80% less time than than T-T and RT-T indexes and 10% less time

than PT-T indexes. The compression is slower for T-T and RT-Ttrees since they must reconstruct

their vertex indices (see Section 4.3). We next note that kD-trees generate the uncompressed spatial

index about twice as fast as their octree counterparts, while compressing the spatial index requires

about the same time for the two decompositions.

Analysis of limit cases. We will now shift our focus to the limit cases for our spatial indexes,

when the threshold values are set to a minimum value, i.e., kV = 1 and kT = 1. The dual extrema
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Table 4. Generation timings, expressed in seconds, for Tetrahedral Trees (based on the thresholds shown in

Table 2) and for R
∗
-trees. Column tree shows the time required for generating the Tetrahedral Tree and R

∗
-tree

spatial decompositions, while compr. shows the time required for compressing the spatial decomposition for

Tetrahedral trees. Column tot shows the overall generation timings. For R
∗
-trees, we also show the branching

factor (bF column).

Data

Tetrahedral trees
R∗-tree

index octree kD-tree

tree compr. tot tree compr. tot bF tree

r
b
l

P-Ttree

58.5 1.48 60.0 24.3 1.51 25.8

4 97.7

52.9 1.17 54.1 21.9 1.21 23.1

PT-Ttree

60.5 1.59 62.1 26.9 1.61 28.5

56.6 1.31 57.9 25.4 1.37 26.8

8 51.0

T-Ttree

61.1 2.67 63.8 26.8 2.65 29.5

55.0 2.33 57.4 24.6 2.37 27.0

RT-Ttree

55.5 3.22 58.7 24.4 2.66 27.1

16 63.4

52.0 2.38 54.4 22.5 2.38 24.8

f
1
6

P-Ttree

141 7.42 149 57.2 7.27 64.5

8 94.6

133 5.81 139 54.6 6.24 60.8

PT-Ttree

150 8.87 159 69.2 9.32 78.6

146 7.95 153 64.8 8.31 73.1

16 115

T-Ttree

148 12.1 160 67.4 12.4 79.7

144 11.1 156 64.3 11.3 75.6

RT-Ttree

143 12.0 155 63.9 12.4 76.3

32 182

139 11.0 150 60.9 11.3 72.2

s
a
n
f
e
r
n

P-Ttree

187 5.00 192 77.2 5.30 82.5

8 177

173 4.09 177 70.5 4.17 74.7

PT-Ttree

193 5.17 198 77.7 5.41 83.1

178 4.11 182 79.8 4.31 84.1

16 206

T-Ttree

189 8.29 197 78.2 8.24 86.5

172 7.46 180 71.4 7.30 78.7

RT-Ttree

174 8.54 182 71.9 8.24 80.1

32 328

164 7.64 172 65.8 7.33 73.2

b
o
n
s
a
i

P-Ttree

353 9.78 363 134 8.70 142

16 320

330 7.74 338 127 7.59 135

PT-Ttree

375 11.3 387 170 11.3 181

340 8.09 348 180 8.22 188

32 509

T-Ttree

370 17.5 387 158 17.6 176

335 14.3 349 138 14.1 152

RT-Ttree

348 18.3 366 145 17.7 163

64 813

321 14.7 335 129 14.1 143

v
i
s
m
a
l
e

P-Ttree

396 11.1 407 155 11.1 166

16 351

365 8.44 373 141 8.45 149

PT-Ttree

414 12.3 427 166 12.3 178

380 8.78 389 190 9.14 200

32 555

T-Ttree

409 19.4 428 172 19.3 192

368 15.5 384 153 15.6 168

RT-Ttree

394 20.4 414 159 19.4 179

64 898

361 16.0 377 142 15.6 157

f
o
o
t

P-Ttree

440 11.9 452 171 11.2 183

32 624

403 8.91 412 158 8.86 167

PT-Ttree

457 13.3 471 189 12.2 201

407 8.95 416 158 8.99 167

64 990

T-Ttree

452 20.0 472 185 19.5 205

402 16.1 418 165 15.9 181

RT-Ttree

419 21.0 440 174 19.5 193

128 1664

384 16.6 401 153 15.9 169
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(b) kD-tree-based Tetrahedral trees

Fig. 6. Average references per tetrahedron (tavд ) vs. block threshold for octree-based (a), and kD-tree-based

(b) Tetrahedral tree representations of the spx dataset. The vertical lines highlight the average (dark gray)

and maximum (light gray) cardinality of the VT relation. For PT-Ttrees, we set kV = kT .

values, when kV or kT are infinite (i.e., a value greater than the number of vertices or tetrahedra

respectively), are not considered further since this results in just a single block indexing the whole

domain. With SRE-encoding, this is essentially equivalent to having just the indexed mesh data

structure.

When kV = 1 and/or kT = 1, the decomposition is a dense subdivision of the embedding space

and the tree storage requirements become very high, as each tetrahedron appears in a large number

of leaf blocks. These cases have a similar decomposition strategy as the PM-octrees which were

defined for polygonal meshes bounding a surface rather than tetrahedral meshes [15, 60]. For

P-Ttrees with kV = 1 on the rbl, f16 and san fernando datasets, the number of blocks are

approximately twice to three times the number of vertices, and tavд grows to approximately 10 for

octrees, and 7 for kD-trees. Even using SRE-compression, the storage overhead for our leaf blocks

grows to around 50% and 75% of the storage cost of the indexed mesh.

We tried generating indexes with kT = 1 using RT-T, PT-T and T-T subdivisions on our testbed

meshes, but the subdivision of embedding space became too fine, and we ran out of memory.

Thus, we have generated them on two smaller datasets, spx (2.9K vertices and 13K tetrahedra) and

fighter2 (257K vertices and 1.4M tetrahedra). Even on these two smaller datasets, with kT = 1, an

RT-T tree could not be generated, but we were able to generate PT-Ttrees and T-Ttrees. For spx,

the number of blocks is 5.5 times the number of tetrahedra, while for fighter2, the number of

blocks is from 3.8 to 5 times the number of tetrahedra. For spx, tavд is 28 on the octree and 21.5 on
the kD-tree, while for fighter2, tavд is 25 on the octree and 16 on the kD-tree.

This result implies that the approach with kT = 1, proposed for triangle meshes in [24], is not

viable in the 3D case. The motivation is that, while the average number of triangles incident in a

vertex in a triangle mesh is equal to 6, the average number of tetrahedra incident in a vertex in a

tetrahedral mesh is around 23 [6], causing a much finer refinement of the embedding space.

Analyzing variations of tavд . We now consider how tavд varies with the values of kV and kT . To
this aim, we have generated indexes with kV and kT ranging from 2 to 100 using RT-T, PT-T, and
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T-T subdivisions, on our two smaller datasets, spx and fighter2. For a PT-T subdivision, which

uses both kV and kT thresholds, we set kV = kT .
Our analysis makes use of the average and maximum number of tetrahedra in the star of a

vertex of our mesh Σ. We denote the latter as |VT | =max{|VT (v)| for each vertex v in Σ}. When

kT is greater than |VT |, PT-Ttrees and T-Ttrees generate the same spatial decomposition and,

thus, below this value, only the kV threshold, used by PT-Ttrees, is relevant for determining the

final tree shape, thereby generating deeper trees. RT-Ttrees present degenerate (unnecessary)

decompositions for lower threshold values. As shown in Figure 6, the RT-T subdivision with

thresholds from 1 to 20 for spx dataset exhibits two main behaviors: it either goes out-of-memory

(i.e., it leads to a nearly infinite subdivision), or it generates a very deep subdivision (with values of

tavд larger than 100).

This result demonstrates that the RT-T subdivision is inefficient for kT values smaller than |VT |.
In this case, we subdivide the space without any benefit, as in configurations like the one shown in

Figure 2. We also observe from Figure 6 that, when kT is larger than |VT |, RT-Ttrees, PT-Ttrees
and T-Ttrees subdivide the embedding space in the same way. Thus, the subdivision seems to

depend only on the threshold and not on the subdivision rule. These trends have also been observed

on other datasets, such as fighter2.

6.2 Comparison against R∗-trees and the IA data structure
We conclude this section with a comparison between Tetrahedral trees and representatives of

the two most widely used data structures for spatial queries: the IA data structure [65] and the

R
∗
-tree [7].

Recall that the IA data structure encodes the Tetrahedron-Vertex (TV) relation, as in the global

tetrahedron array of the Tetrahedral trees, as well as the Tetrahedron-Tetrahedron (TT) and partial

Vertex-Tetrahedron (VT) relations. As can be seen in the tree and conn. columns of Table 3, the

spatial index underlying a Tetrahedral tree requires about 95% less storage than the connectivity

information stored in the IA.

We have implemented a 3D R
∗
-tree indexing data structure for tetrahedral meshes, starting from

an open source 2D implementation [2]. For each dataset, we have built three R
∗
-tree indexes, with

different branching factors, starting from the optimal ones defined in [7], and we have calibrated

these with respect to our tetrahedral meshes. In Table 3, we show the branching factors (under bF
column). Each internal block of the R

∗
-tree contains: (i) a pointer to its parent block, (ii) an array

of children blocks, and (iii) the minimum and maximum corner points of the bounding box. Each

leaf block stores just a pointer to an integer array for the indexed tetrahedra. Each tetrahedron is

indexed in a single leaf block.

Before comparing Tetrahedral trees and R
∗
-trees, we describe how we have selected the branch-

ing factors in R
∗
-trees, as they appear remarkably lower that the leaf blocks thresholds used in

Tetrahedral trees. In [7], the authors state that the optimal branching factor obtained in their

experiments was 8, and thus we have started our calibration from this value, choosing powers of

two for the other branchings and balancing storage costs against query performance (which we

discuss in Section 7). With smaller branching factors, the R
∗
-tree index requires from 150 to 440

MB, depending on the specific mesh (see column tree). For larger branching factors, the storage
required by the R

∗
-tree index decreases to between 45 and 150 MB. R

∗
-trees always require more

memory than Tetrahedral trees: from 85% more, for larger branching factors, to 93% more, for

smaller ones.
In spite of this trend, R

∗
-trees exhibit significantly higher computational overheadwhen executing

spatial queries (see Section 7). This is due to the larger number of leaf blocks (and their indexed

tetrahedra) that need to be checked to satisfy spatial queries, as higher branching factors produce
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larger overlaps of the bounding boxes. Thus, for example, while performing point locations, R
∗
-trees

have to visit several branches of the tree, while decompositions based on octrees and kD-trees only

need to visit a single subtree in each level of the index.

The total storage requirements account, in the case of Tetrahedral trees and R
∗
-trees, for the

indexed mesh plus the spatial index, while, in case of the IA data structure, for the indexed mesh

plus the adjacencies, Tetrahedral trees are always more compact: on average 40% smaller than the

IA data structure and from 25% to 50% more compact than R
∗
-trees, depending on the branching

factor.

Comparing the generation times of Tetrahedral trees and R
∗
-trees (see Table 4), we note that

larger R
∗
-tree branching factors lead to larger differences in generation times. For small branching

factors, R
∗
-trees have generation timings similar to those of Tetrahedral octrees, and, thus, twice the

generation times for Tetrahedral kD-trees. This gap increases as the the branching factor increases,

where for the larger branchings, R
∗
-trees use from 40% to 75% more time than Tetrahedral trees.

7 QUERY EVALUATION
In this section, we analyze our experimental performance results for spatial and topological queries

on Tetrahedral trees using the meshes and thresholds described in Section 6 along with the run-
aware algorithmic optimizations described in Sections 5.1 and 5.2. For our experimental comparison,

we have also developed an implementation of these queries on the IA data structure [51], and on

the R
∗
-tree [7], and we also compare against uncompressed tetrahedral trees.

Queries on the IA data structure. To execute spatial queries on the indexed mesh data structure, the

best we can do is to sequentially tests all the tetrahedra in Σ, leading to a complexity which is linear

in the number of tetrahedra in the mesh. Several strategies have been proposed in the literature

to optimize spatial queries when we have additional connectivity information [23, 28, 29, 59]. We

have implemented the stochastic walk approach for point location on the IA data structure, as

this strategy has been shown to have the best performances [28]. This approach randomly picks a

starting tetrahedron σ , and then walks through adjacencies from σ to a target point. This target

point is the input point p, in the case of a point location, or a point on the boundary of the range,

in the case of a range query.

For point location queries, we return the tetrahedron σ ′
, if it can be found, or an empty output.

In the case of a range query, once we find the first tetrahedron σ ′
that contains the target point, we

start a traversal through mesh adjacencies to get all the intersecting tetrahedra. We have adapted

the range query algorithm to execute range Vertex-Tetrahedron (VT) queries. Given a vertex v, in
order to extract the local VT relation, we start from the tetrahedron σ encoded in the partial VT ∗

relation of v. We then identify all the tetrahedra incident in v by using the Tetrahedron-Tetrahedron
(TT) relation.

Note that the stochastic walk assumes a convex domain. If a concave area or a hole is found

during the execution of a query, the stochastic walk algorithm may not return a complete answer

to the query, i.e., it may return a subset of the tetrahedra satisfying the query. For example, while

Tetrahedral trees and R
∗
-trees have no trouble responding to the point query in Figure 4(b), query

algorithms on an IA would have to revert to linear search to successfully respond to this query.

In order to keep track of this behavior, we compute a statistic, that we call the hit ratio, as the
percentage of fully answered queries. A hit ratio of 100% means that all queries have been answered

correctly.

To improve the efficiency of our IA data structure implementation, we have also added a dynamic

bit vector, using the Boost C++ library [83], which greatly reduces the number of geometric tests

executed in a single query. The cost of this speed-up is a run-time storage overhead of one bit for

ACM Trans. Spatial Algorithms Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:22 Riccardo Fellegara, Leila De Floriani, Paola Magillo, and Kenneth Weiss

each tested tetrahedron. As a further optimization, we initialize the stochastic walk by randomly

picking 100 tetrahedra, and then starting the walk from the one nearest to the target point or range.

Queries on the R∗-tree. Spatial queries for an R
∗
-tree begin with a top-down tree traversal to

locate the leaf blocks containing the query point or intersecting the query range. For each such

leaf block b, we apply the appropriate geometric tests on all tetrahedra indexed by b. As each
tetrahedron is indexed in only one leaf block, R

∗
-trees avoids duplicate geometric tests on the same

tetrahedron, but blocks in multiple branches of the tree must be tested, since R
∗
-tree blocks can

overlap.

The overlapping blocks within an R
∗
-tree’s structure also tend to reduce the efficiency of range

topological queries since spatially close tetrahedra can be arbitrarily far apart in the R
∗
-tree’s index

space. Thus, to respond to range topological queries, we must first execute a range query and then

post-process the results to extract the desired topological relations. This can be acceptable for

smaller ranges, but for larger ranges, the indexing structure no longer helps to reduce the query

times, leading to time and storage requirements entirely similar to a brute-force strategy on the

entire mesh. In contrast, the range topological queries for Tetrahedral trees incrementally build up

the topological relations as each leaf block is being processed.

Experimental setup. In our performance analysis of the spatial and topological queries, we

first compare the relative efficiency among the various Tetrahedral trees. We then compare the

best representative among Tetrahedral trees, the IA data structure, and R
∗
-trees. The charts in

Figures 7, 8 and 9 compare the spatial query performance among the IA data structure, the R
∗
-tree,

the uncompressed and SRE-encoded Tetrahedral trees. For these comparisons, we plot the R
∗
-trees

with the middle branching factor (see Table 2) as these provide the best trade-off between storage

and execution times. Similarly, for the Tetrahedral trees, we plot the PT-T Tetrahedral kD-trees

constructed using the smaller kv and kt thresholds as they have the best overall query performances

among the sixteen Tetrahedral trees. Similarly, Figures 10 and 11 compare performances on the

topological queries for the IA data structure, and the same R
∗
-trees and Tetrahedral trees. We

provide the full query performance results for all Tetrahedral trees and R
∗
-trees in Appendix A and

summarize these results in our analysis.

7.1 Spatial queries
For point location queries, we used a set of 1000 randomly generated query points inside the

bounding box of the mesh. Similarly, for range queries and range topological queries, we used

two sets of 1000 randomly generated query ranges inside the bounding box of the mesh: a set of

smaller ranges containing on average from 15 to 45 thousand tetrahedra, and a set of larger ranges

containing from 300 to 700 thousand tetrahedra.

Point location. This query is extremely fast, as can be seen in Figure 7 (and Tables A.I, A.III

and A.IV). Thanks to the run-aware optimization (described in Section 5.1), Tetrahedral trees

perform 40%–80% fewer geometric tests than their uncompressed counterparts, leading to 30%–70%

faster response times.

Compared to the IA data structure, Tetrahedral trees perform about 50%–90% fewer geometric

tests on our semi-regular datasets, leading to query times that are 60%–90% faster. For the other

datasets, the IA data structure gives only partial results, with hit ratios from 50% to 74%. If we

estimate the full ratio, i.e., by normalizing the geometric tests and execution times on the IA data

structure by multiplying them by the inverse of the hit ratio, we observe that Tetrahedral trees

always perform better than the IA data structure on these irregular datasets with both thresholds.
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Fig. 7. Point location results for the R
∗
-tree (based on the middle branching factor), the IA data structure

and the uncompressed and SRE-compressed PT-T Tetrahedral kD-trees. The IA data structure has hit ratios

of 50% and 74% for rbl and f16 datasets (marked with ⊗), respectively.
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Fig. 8. Smaller range query results for the R
∗
-tree (based on the middle branching factor), the IA data

structure and the uncompressed and SRE-compressed PT-T Tetrahedral kD-trees. The IA data structure has

hit ratios of 43% and 72% for rbl and f16 datasets (marked with ⊗), respectively.

Point location query times for R
∗
-trees tend to decrease with the branching factor, i.e., fewer

tetrahedra in leaf blocks lead to faster executions. However, R
∗
-trees with smaller branching factors

require more storage (as discussed in Section 6.2). We observe that Tetrahedral trees perform better

than the best R
∗
-tree, requiring, on average, 60% less time and executing 70% fewer geometric tests.

Execution times of Tetrahedral trees are also more stable across the input meshes, as they vary

from 0.01 to 0.05 seconds, while execution times of the R
∗
-tree with the smallest branching factor

(see Table A.III) range from 0.01 to 0.90 seconds, depending on the mesh.

Range queries. For this query, we use a dynamic bit vector for Tetrahedral trees to track the

tetrahedra that have already been tested. As with queries on the IA data structure, this adds a

run-time storage overhead of one bit for each tested tetrahedron. As shown in Figures 8 and 9

(and in Appendix Tables A.I and A.IV), we observe that Tetrahedral trees always execute fewer
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Fig. 9. Larger range query results for the R
∗
-tree (based on the middle branching factor), the IA data structure

and the uncompressed and SRE-compressed PT-T Tetrahedral kD-trees. The IA data structure has hit ratios

of 51% and 92% for rbl and f16 datasets (marked with ⊗).

geometric tests, and are faster than uncompressed trees, with approximately a 10–20% time saving.

Therefore, in the following, we will focus just on the SRE-compressed Tetrahedral trees. We did

not observe any trends across datasets, subdivision criteria or box sizes to suggest a preference for

octrees or kD-trees. However, trees built with smaller thresholds perform fewer tests than those

generated with larger ones and, in general, PT-Ttrees and T-Ttrees perform better than P-Ttrees

on these queries.

In our larger range queries (see Figure 9 and Table A.I), Tetrahedral trees always perform better

than the IA data structure, achieving about a 55% improvement for san fernando, and about 70%

for the other datasets. Tetrahedral trees generally perform better than the IA data structure on

smaller range queries as well, requiring from 30%–50% less time. However, they are a bit slower

(about 5%–35%) on the san fernando dataset, where the run-aware filtering appears to be less

effective in filtering out candidate tetrahedra from more expensive tetrahedra-in-range tests. For

the non-convex datasets, the IA data structure had hit ratios from 43% to 92%. By estimating the

full ratio, we observe that Tetrahedral trees are always faster, requiring from 10%–50% of the time.

Comparing the performance of Tetrahedral trees against R
∗
-trees (see Figures 8 and 9 and

Tables A.I and A.III), we found that Tetrahedral trees are faster and execute fewer tetrahedron-
in-range tests than R

∗
-trees for range queries, with the exception of the san fernando dataset

on small ranges, as discussed above. In all other cases, Tetrahedral trees require on average from

15%–80% less time, and execute 20%–80% fewer geometric tests than R
∗
-trees. The performances

of R
∗
-trees with other branching factors (shown in Table A.III) indicate a larger performance loss

with respect to Tetrahedral trees as the branching factor increases.

7.2 Topological queries
In this subsection, we analyze performance results from executing range-based topological queries

over SRE-compressed Tetrahedral trees, the IA data structure and R
∗
-trees.

Range Vertex-Tetrahedron (VT) queries. We use the same ranges as in the range queries and only

report timings since the statistics (i.e., the number of tetrahedron-in-range executed) are the same

as for range queries. P-Ttrees and PT-Ttrees are more suitable than RT-Ttrees and T-Ttrees for

these queries since they are vertex-based, while P-Ttrees and PT-Ttrees explicitly encode the set
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Fig. 10. Range Vertex-Tetrahedron (VT) query results for the R
∗
-tree (based on the middle branching factor),

the IA data structure and the SRE-compressed PT-T Tetrahedral kD-tree. The IA data structure cannot fully

answer the query on some datasets (marked with ⊗).
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Fig. 11. Range Tetrahedron-Tetrahedron (TT) query results for the R
∗
-tree (based on the middle branching

factor), and SRE-compressed PT-T Tetrahedral kD-tree.

of vertices contained in the leaf blocks, RT-Ttrees and T-Ttrees need to reconstruct this during

the query, i.e., by executing geometric point-in-leaf tests. This can be seen in Table A.II, where

Tetrahedral trees based on RT-T and T-T subdivisions are 35%–60% slower compared to their P-T

and PT-T counterparts. Thus, we compare only the performances of the Tetrahedral trees based on

P-T and PT-T subdivisions against the IA data structure and R
∗
-trees.

As it is evident from Figure 10, Tetrahedral trees always completely answer the query and do so

faster than the IA data structure, requiring 70%–80% of the time. They are also faster than R
∗
-trees,

with a 35%–70% time savings on smaller ranges, and 60%–80% on larger ones.

Range Tetrahedron-Tetrahedron (TT) queries. For this query, we only compare Tetrahedral trees

against R
∗
-trees since the IA data structure explicitly encodes the Tetrahedron-Tetrahedron adjacency

relation. Recall that range adjacency queries in R
∗
-trees must first execute a range query and then

compute the adjacency relations in a separate pass through the data. This requires a higher storage

overhead (i.e., an additional list containing the result of the spatial query) compared to querying a

Tetrahedral tree, but query performances do not appear to be significantly affected by variations in
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the R
∗
-tree branching factor. We can see from Figure 11, and Tables A.II and A.III that answering

the rangeTT query on Tetrahedral trees requires up to 60% less time than on R
∗
-trees, with a wider

gap for the larger ranges.

8 CONCLUDING REMARKS
We have defined a family of spatial indexes, the Tetrahedral trees, that index a tetrahedral mesh using

an octree or kD-tree subject to four different refinement strategies. Leveraging ideas from [35], we

have applied spatial coherence to reorder and compress the indexed data, thus obtaining a compact

encoding for Tetrahedral trees. We have developed efficient algorithms for both topological and

spatial queries to take advantage of this compact encoding. The source code for our reference

implementation is available at [33].

We have compared the various Tetrahedral trees based on memory usage, generation times

and performances in spatial and topological queries. Compared to the three uncompressed spatial

indexes defined in [25], the compressed Tetrahedral trees encoding provides an order of magnitude

storage saving while also improving query response times. Conversely, the storage differences

among the various Tetrahedral trees, using this compact encoding, are relatively small. In general,

using an octree or a kD-tree subdivision does not significantly influence the overall query response

times. While we have observed that smaller subdivision thresholds lead to slightly faster query

execution times. Larger or smaller thresholds do not affect significantly the storage cost of the

resulting Tetrahedra trees.

The PT-Ttree exhibits, in general, the best query performances with a moderate memory

overhead. We also found that T-T and RT-Ttrees can be slower during the execution of our

topological queries since they have to extract the range of the vertices at run time. Even though T-T

and RT-Ttrees have similar storage requirements and query performances, the RT-T subdivision

is limited by its tetrahedra insertion order which leads to unnecessarily deeper trees, in some

cases. Our experiments highlight that this behavior happens when the threshold kT on the number

of tetrahedra per leaf block is below the maximum of the numbers of tetrahedra incident at the

vertices. This suggests that the RT-T subdivision can be effective for 2D meshes, as described in [80],

but not for tetrahedral meshes in 3D.

We have also compared Tetrahedral trees with representative data structures used for spatial

and topological queries in practice: the IA data structure [65] and the R
∗
-tree [7]. Tetrahedral trees

outperform the IA data structure and R
∗
-trees on spatial and range topological queries since they

utilize the rich connectivity information in the tetrahedral mesh while also supporting domains

with complicated geometry and topology. In particular, the IA data structure provides a complete

answer to spatial queries only on convex simply-connected meshes. R
∗
-trees require more space

and are highly dependent on the branching factor of the internal nodes. Smaller branching factors

enable a better discretization of the space and an increased efficiency in query execution but exhibit

a larger storage overhead.

In our current implementation of Tetrahedral trees, we require a tetrahedral mesh to be provided

as input. While simulation tools produce a 3D mesh directly, in many other applications a 3D point

cloud is given, and a 3D triangulation algorithm needs to be applied to this input to produce a

tetrahedral mesh. A future development of the work presented here is to design and implement an

algorithm for building a Delaunay triangulation from a 3D point cloud which operates directly on

Tetrahedral trees. The initial spatial decomposition will be generated based on the point cloud and

a Delaunay mesh computed by triangulating the points in each leaf block independently and in

parallel, for example using OpenMP [16, 17, 73]. The local Delaunay meshes could be combined

to obtain a global Delaunay one by extending the DeWall algorithm [20] to our hierarchical

decomposition.
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We also plan to extend Tetrahedral trees to deal with arbitrary 3D simplicial complexes, i.e., with

a non-manifold domain and with dangling edges and triangles. One application we are targeting is

the identification and reconstruction of individual (physical) trees from huge point clouds originated

by airborne or terrestrial Light Detection and Ranging (LiDAR) acquisitions. In this context, the

structure of the point cloud is inferred by computing an alpha shape simplicial complex [30], which

is further processed, by using, for instance, topology-based analysis techniques [95]. We plan to

devise a distributed strategy for computing an alpha shape on Tetrahedral trees, and a distributed

version of the topological analysis algorithm for identifying individual trees.

By using the extension of Tetrahedral trees for 3D simplicial complexes, further applications to

geological models [88, 89] could be tackled, which are characterized by non-manifold geometries.

This is an active research field [8–10, 12, 37, 43, 46, 70, 71, 91], but the efficient generation of these

models is still an open problem, since existing methods do not scale to very large meshes.
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A APPENDIX

Table A.I. Comparison of total timings (in seconds) and average geometric tests for point locations and range

queries on Tetrahedral trees. The time columns show the execution timings for 1000 queries, while the tests
columns show the average geometric tests executed in a single query. The ok columns show the results for

the Tetrahedral octrees, while the kD columns show the results for the Tetrahedral kD-trees. In bold are

highlighted the timings and geometric tests shown in the charts.

data

point location range queries

smaller larger

time tests time tests time tests

ok kD ok kD ok kD ok kD ok kD ok kD

r
b
l

P-T

0.038 0.025 0.17K 0.11K 7.06 6.27 26.6K 22.9K 27.2 24.6 83.5K 70.4K

0.054 0.043 0.26K 0.20K 7.98 7.53 31.5K 29.4K 29.3 28.1 98.0K 91.6K

PT-T

0.035 0.023 0.16K 0.09K 6.86 6.02 25.3K 21.5K 26.8 24.1 79.5K 66.3K
0.046 0.031 0.22K 0.14K 7.53 6.76 29.1K 25.4K 28.3 26.1 91.1K 79.1K

T-T

0.036 0.023 0.16K 0.09K 6.98 6.14 25.8K 21.7K 27.3 24.5 81.1K 67.2K

0.046 0.031 0.22K 0.14K 7.57 6.82 29.1K 25.4K 28.5 26.3 91.1K 79.2K

F
1
6

P-T

0.056 0.046 0.25K 0.20K 6.81 6.66 27.0K 26.3K 43.9 44.8 163K 167K

0.092 0.063 0.44K 0.29K 8.23 7.48 33.7K 30.2K 51.9 49.4 203K 190K

PT-T

0.039 0.029 0.16K 0.11K 6.03 5.55 23.1K 20.9K 39.7 38.9 140K 134K
0.050 0.036 0.22K 0.15K 6.47 6.05 25.3K 23.3K 41.9 41.4 153K 149K

T-T

0.039 0.029 0.17K 0.11K 6.05 5.59 23.1K 20.9K 39.9 39.1 140K 134K

0.050 0.036 0.22K 0.15K 6.48 6.10 25.3K 23.3K 42.2 41.6 153K 149K

s
a
n
f
e
r
n

P-T

0.024 0.018 0.11K 0.08K 6.36 5.33 25.5K 20.9K 59.0 51.9 228K 193K

0.029 0.036 0.14K 0.18K 6.82 6.90 27.9K 28.4K 63.2 64.4 251K 257K

PT-T

0.021 0.018 0.09K 0.08K 6.11 5.32 24.2K 20.8K 56.9 51.9 217K 193K
0.029 0.032 0.13K 0.16K 6.82 6.74 27.9K 27.6K 63.2 63.3 250K 252K

T-T

0.022 0.023 0.10K 0.11K 6.13 5.82 24.4K 23.0K 58.0 55.9 221K 212K

0.029 0.034 0.13K 0.17K 6.85 6.81 27.9K 27.8K 63.4 65.2 250K 259K

b
o
n
s
a
i

P-T

0.010 0.018 0.03K 0.07K 5.10 5.46 19.7K 21.3K 50.6 54.4 175K 194K

0.014 0.024 0.05K 0.11K 6.00 6.02 24.0K 24.1K 56.7 59.1 209K 219K

PT-T

0.009 0.011 0.03K 0.04K 4.87 4.66 18.4K 17.2K 48.7 48.5 163K 157K
0.012 0.019 0.04K 0.08K 5.52 5.68 21.8K 22.4K 53.2 56.1 191K 204K

T-T

0.009 0.011 0.03K 0.04K 4.93 4.71 18.5K 17.2K 49.4 48.8 164K 157K

0.012 0.020 0.04K 0.08K 5.55 5.72 21.8K 22.4K 53.5 56.6 191K 204K

v
i
s
m
a
l
e

P-T

0.006 0.009 0.02K 0.03K 4.58 4.57 17.3K 17.2K 51.3 51.8 169K 172K

0.010 0.016 0.03K 0.06K 5.55 5.56 22.2K 22.2K 58.3 59.3 212K 216K

PT-T

0.006 0.008 0.02K 0.03K 4.31 4.33 15.9K 15.9K 48.9 50.1 154K 160K
0.008 0.013 0.02K 0.05K 5.18 5.19 20.5K 20.3K 55.8 56.7 200K 201K

T-T

0.006 0.008 0.02K 0.03K 4.35 4.36 15.9K 15.9K 49.5 50.6 154K 160K

0.008 0.013 0.02K 0.05K 5.20 5.21 20.5K 20.3K 56.1 56.8 200K 201K

f
o
o
t

P-T

0.010 0.015 0.04K 0.06K 5.63 5.67 21.5K 21.7K 61.0 61.1 206K 208K

0.015 0.023 0.05K 0.10K 6.47 6.64 25.9K 26.6K 67.3 68.5 246K 251K

PT-T

0.010 0.013 0.03K 0.05K 5.35 5.44 20.0K 20.5K 58.6 59.7 190K 197K
0.014 0.022 0.05K 0.10K 6.43 6.60 25.7K 26.4K 67.0 68.2 244K 249K

T-T

0.010 0.013 0.04K 0.05K 5.52 5.49 20.7K 20.5K 60.3 60.2 197K 197K

0.014 0.022 0.05K 0.10K 6.48 6.63 25.7K 26.4K 67.5 68.8 245K 250K
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Table A.II. Comparison of timings (in seconds) for executing the range Vertex-Tetrahedron (VT) and range

Tetrahedron-Tetrahedron (TT) queries. The columns show the execution timings for 1000 queries. These

queries use the same query boxes as for the spatial range queries. The ok columns show the results for

the Tetrahedral octrees, while the kD columns show the results for the Tetrahedral kD-trees. In bold are

highlighted the timings and geometric tests shown in the charts.

data

range VT range TT

smaller larger smaller larger

ok kD ok kD ok kD ok kD

r
b
l

P-T

7.97 7.60 78.0 75.9 46.2 44.6 439 430

7.58 7.41 73.6 73.4 45.8 44.8 427 421

PT-T

8.18 7.61 79.5 76.0 46.6 44.6 445 434
7.73 7.55 75.2 75.4 45.6 44.5 430 425

T-T

12.2 11.9 112 110 47.8 46.2 444 436

11.1 11.2 102 105 46.4 45.9 431 430

F
1
6

P-T

4.06 4.05 65.8 66.2 25.7 25.3 406 403

4.12 4.05 63.6 64.4 27.2 26.1 409 405

PT-T

4.12 4.07 68.2 68.0 25.3 24.6 409 406
4.08 4.04 66.5 67.2 25.6 24.8 405 404

T-T

6.56 6.48 100 102 26.5 25.9 411 410

6.34 6.30 95.3 97.0 26.5 25.6 406 406

s
a
n
f
e
r
n

P-T

2.94 2.69 62.9 61.2 20.1 18.7 429 420

3.00 2.70 61.5 58.5 20.5 20.1 426 427

PT-T

2.94 2.68 63.8 61.2 20.0 18.7 429 419
3.00 2.70 61.1 58.5 20.5 20.0 427 426

T-T

4.70 4.34 94.7 89.0 21.1 19.9 433 425

4.48 4.21 87.6 84.1 20.9 20.4 429 433

b
o
n
s
a
i

P-T

4.10 3.87 101 95.7 25.1 24.9 578 581

4.28 4.05 99.3 95.4 26.4 24.9 577 579

PT-T

4.16 3.60 107 105 25.6 25.5 594 596
4.22 3.88 98.5 94.8 25.1 24.5 571 578

T-T

6.10 5.44 156 149 28.0 26.6 618 634

5.80 5.55 138 135 27.6 26.0 581 600

v
i
s
m
a
l
e

P-T

4.18 3.58 120 116 25.8 24.2 674 668

4.44 4.09 116 110 27.3 25.0 659 663

PT-T

4.27 3.63 125 119 25.9 25.0 688 677
4.45 3.90 115 111 26.1 25.3 655 665

T-T

6.25 5.42 183 170 28.8 26.7 712 722

5.81 5.52 158 156 27.2 26.2 667 686

f
o
o
t

P-T

4.94 4.09 136 127 31.3 30.9 780 778

4.89 4.70 128 122 30.6 30.0 757 757

PT-T

4.94 4.12 140 129 31.3 31.0 793 779
4.89 4.66 126 123 30.6 30.0 758 757

T-T

7.23 6.11 198 180 34.4 32.0 813 824

6.58 6.28 165 158 30.6 29.9 751 754
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Table A.III. Comparison of total timings (in seconds) and of average geometric tests (per query) for all the

spatial and topological queries executed on our R
∗
-tree implementation using three different branch factor.

The time columns show the execution timings for 1000 queries, while the tests columns show the average

geometric tests executed in a single query. In bold are highlighted the timings and geometric tests shown in

the charts.

data bF

point range query range VT range TT

location smaller larger small large small large

time tests time tests time tests time time time time

r
b
l

4 0.03 0.02K 18.6 42.8K 174 409K 24.2 255 65.9 786

8 0.03 0.08K 12.1 43.9K 118 412K 17.5 200 63.4 629
16 0.09 0.32K 10.8 45.3K 105 416K 16.3 188 59.7 560

f
1
6

8 0.21 0.49K 11.0 24.8K 153 363K 13.6 308 42.6 1060

16 0.87 2.70K 10.9 28.8K 141 381K 12.9 302 41.3 981
32 5.20 16.6K 11.1 31.8K 138 395K 12.4 296 42.4 1004

s
a
n
f
e
r

8 0.01 0.05K 3.89 16.0K 110 375K 4.73 176 19.8 687

16 0.04 0.17K 3.74 16.6K 99 380K 4.41 165 19.5 640
32 0.21 1.12K 4.04 18.6K 102 395K 4.37 161 20.1 627

b
o
n
s
a
i

16 0.04 0.20K 5.22 23.1K 133 534K 6.69 257 30.5 904

32 0.20 1.10K 5.42 24.8K 136 548K 6.41 248 30.6 936
64 0.67 3.90K 5.71 27.1K 128 566K 6.44 248 30.9 908

v
i
s
m
a 16 0.03 0.15K 5.56 23.0K 151 606K 7.44 303 32.9 977

32 0.14 0.74K 5.72 24.6K 151 619K 7.04 289 32.9 1017
64 0.58 3.41K 5.85 26.7K 143 638K 6.93 292 33.2 970

f
o
o
t

32 0.18 0.98K 6.73 29.2K 174 712K 8.33 317 39.9 1186

64 0.65 3.77K 6.78 31.6K 159 731K 8.17 311 39.9 1137
128 2.73 16.1K 7.50 35.3K 163 759K 8.23 309 40.7 1129
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Table A.IV. Comparison of total timings (in seconds) and average geometric tests for point locations and

range queries on Uncompressed Tetrahedral trees based on the naive uncompressed encoding, described

in [25]. The time columns show the execution timings for 1000 queries, while the tests columns show the

average geometric tests executed in a single query. The ok columns show the results for Uncompressed octrees,

while the kD columns show the results for Uncompressed kD-trees. In bold are highlighted the timings and

geometric tests shown in the charts.

data

point location range queries

smaller larger

time tests time tests time tests

ok kD ok kD ok kD ok kD ok kD ok kD

r
b
l

P-T

0.056 0.040 0.31K 0.21K 7.96 7.23 31.1K 27.7K 30.9 28.2 101K 87.9K

0.081 0.068 0.46K 0.38K 9.08 8.66 37.1K 35.0K 34.0 32.6 121K 113K

PT-T

0.051 0.035 0.28K 0.19K 7.73 6.96 29.8K 26.2K 30.4 27.5 96.4K 83.6K
0.069 0.050 0.39K 0.27K 8.58 7.85 34.2K 30.8K 32.6 30.3 112K 100K

RT-T

0.053 0.036 0.29K 0.19K 7.93 7.09 30.5K 26.7K 31.2 28.1 100K 85.5K

0.069 0.050 0.39K 0.27K 8.60 7.92 34.2K 30.8K 32.8 30.6 112K 100K

f
1
6

P-T

0.124 0.110 0.45K 0.40K 11.2 11.2 30.8K 30.4K 68.9 71.3 185K 193K

0.205 0.150 0.77K 0.55K 13.5 12.5 38.4K 34.7K 81.1 78.2 229K 217K

PT-T

0.083 0.064 0.29K 0.22K 9.93 9.27 26.4K 24.2K 61.9 61.2 160K 156K
0.109 0.083 0.39K 0.29K 10.7 10.1 28.9K 27.0K 65.9 65.6 174K 172K

RT-T

0.083 0.064 0.29K 0.22K 10.0 9.34 26.4K 24.2K 62.5 61.7 160K 156K

0.109 0.083 0.39K 0.29K 10.8 10.2 28.9K 27.0K 66.4 66.0 174K 172K

s
a
n
f
e
r
n

P-T

0.072 0.045 0.44K 0.27K 7.57 6.34 31.5K 25.8K 65.6 57.1 261K 220K

0.086 0.083 0.53K 0.51K 8.01 7.94 33.8K 33.5K 69.3 69.0 282K 282K

PT-T

0.060 0.044 0.37K 0.26K 7.23 6.33 29.9K 25.7K 63.3 57.2 249K 219K
0.085 0.075 0.53K 0.46K 8.01 7.77 33.7K 32.6K 69.4 67.9 281K 276K

RT-T

0.061 0.054 0.37K 0.32K 7.30 6.79 30.1K 27.8K 64.3 60.7 253K 237K

0.085 0.076 0.53K 0.47K 8.04 7.82 33.7K 32.8K 69.4 69.7 281K 283K

b
o
n
s
a
i

P-T

0.030 0.035 0.16K 0.20K 5.82 6.35 23.3K 26.0K 55.9 60.1 203K 227K

0.049 0.050 0.28K 0.29K 6.76 6.99 28.0K 29.1K 62.4 65.0 239K 254K

PT-T

0.028 0.020 0.15K 0.11K 5.56 5.38 22.0K 21.1K 53.9 53.0 190K 186K
0.040 0.039 0.22K 0.22K 6.25 6.58 25.5K 27.2K 58.5 62.0 219K 237K

RT-T

0.028 0.020 0.15K 0.11K 5.64 5.42 22.1K 21.1K 54.6 53.4 191K 186K

0.040 0.039 0.22K 0.22K 6.28 6.62 25.5K 27.2K 58.7 62.3 219K 237K

v
i
s
m
a
l
e

P-T

0.019 0.018 0.10K 0.09K 5.30 5.24 20.9K 20.9K 57.0 57.2 198K 204K

0.049 0.034 0.28K 0.19K 6.34 6.41 26.1K 26.6K 64.3 65.9 242K 252K

PT-T

0.016 0.015 0.08K 0.08K 4.99 4.95 19.4K 19.4K 54.5 55.0 182K 190K
0.023 0.026 0.12K 0.14K 5.91 5.96 24.2K 24.5K 61.6 62.4 229K 235K

RT-T

0.016 0.015 0.08K 0.08K 5.03 4.99 19.4K 19.4K 54.9 55.4 182K 190K

0.023 0.026 0.12K 0.14K 5.94 6.00 24.2K 24.5K 61.9 62.7 229K 235K

f
o
o
t

P-T

0.028 0.030 0.15K 0.17K 6.55 6.44 26.3K 26.1K 67.9 66.4 243K 244K

0.051 0.053 0.29K 0.31K 7.42 7.57 30.8K 31.7K 74.0 74.7 282K 289K

PT-T

0.026 0.026 0.14K 0.14K 6.24 6.21 24.7K 24.9K 65.4 64.8 227K 232K
0.047 0.051 0.27K 0.29K 7.37 7.51 30.6K 31.4K 73.7 74.3 280K 287K

RT-T

0.027 0.026 0.15K 0.14K 6.45 6.26 25.5K 24.9K 66.9 65.2 235K 233K

0.047 0.052 0.27K 0.30K 7.41 7.54 30.6K 31.4K 74.0 74.6 281K 288K
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