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Figure 1: Three nested refinement domains for hierarchies of tetrahedra and diamonds. The descendant domain (left) is the limit shape of the
domain covered by all descendants of a given diamond (colored). Due to the fractal nature of these shapes, we introduce the more conservative
convex descendant domain (middle) and bounding box descendant domain (right) to simplify the computation while still tightly covering the
descendant domain. In each case, the refinement domain of one of the diamond’s parents, grandparents and great-grandparents is shown.

ABSTRACT

We investigate several families of polyhedra defining nested refine-
ment domains for hierarchies generated through longest edge tetra-
hedral bisection. We define the descendant domain of a tetrahedron
as the domain covered by all possible descendants generated by
conforming bisections. Due to the fractal nature of these shapes,
we propose two simpler approximations to the descendant domain
that are relatively tight with respect to the descendant domain and
can be implicitly computed at runtime. We conclude with a brief
discussion of the applications of these shapes for interactive view–
dependent volume visualization and isosurface extraction.

1 INTRODUCTION

Hierarchical domain decompositions play a fundamental role
in analysis and visualization within scientific and mathemati-
cal computing. Such decompositions are typically driven by an
application–dependent selection criterion, and can be generated
bottom-up, by simplifying a fine mesh, top-down, by refining a
coarse mesh, or incrementally, via simplifications and refinements.

A class of such decompositions that has proven to be particu-
larly effective for visualization applications is based on nested hi-
erarchies of tetrahedra generated by longest edge bisection (LEB),
in which a single parent tetrahedron is replaced by two child tetra-
hedra created during its bisection. When initialized over a cubic
domain that has been tetrahedralized through a diagonal, this pro-
cess generates only three classes of tetrahedra. The nesting prop-
erty is significant, since it enables simple top-down spatial selection
queries. However, tetrahedral bisection, on its own, does not gen-
erate conforming domain decompositions, i.e. it introduces cracks
between neighboring tetrahedra. This is problematic since it can
lead to discontinuities in functions defined on the domain.

Conforming bisections along an edge e can be achieved by ensur-
ing that e is the longest edge of all tetrahedra incident to it, and by
concurrently bisecting these tetrahedra. This can be satisfied at run-
time by recursively bisecting neighbors that do not share this prop-
erty or by utilizing a geometric data structure, typically referred to

∗kweiss@cs.umd.edu
†deflo@disi.unige.it

as a diamond (see Figures 2a and 3a), defined by the set of tetrahe-
dra sharing a common longest edge. See [7] for a recent survey on
simplex and diamond hierarchies and their applications.

Unfortunately, the hierarchical dependency relationships re-
quired for conforming bisections no longer defines a nested hierar-
chy. One approach to reintroduce a nested hierarchy is to explicitly
integrate such dependencies into a saturated selection criterion, in
which a tetrahedron’s error must be greater than those of its LEB
neighbors as well as their children (see [3] and references therein).

More flexible approaches have been proposed for generating
conforming decompositions over two dimensional domains. In par-
ticular, each triangle, or diamond, can be associated with a simple
geometric primitive, such that the domain covered by this shape is
enclosed by the shape(s) associated with its parent(s). Blow [2] in-
troduces an explicit nested hierarchy of spheres for view-dependent
rendering of terrain datasets that is independent from the diamond
hierarchy. Lindstrom et al. [4] incorporate this spherical hierarchy
into the diamond hierarchy. Tanaka [5], Balmelli [1] and Gerst-
ner [3] consider a nested hierarchy based on a node’s descendants.
In particular, the limit shape of the domain covered by a diamond’s
descendants is an octagon whose edge lengths are defined by the di-
amond’s triangles (see Figure 2b). This space is the tightest possible
nesting domain since every diamond’s octagon is entirely covered
by those of its children (see Figure 2c). In an attempt to generalize
the octagon to 3D, Tanaka et al. [6] propose the rhombicuboctahe-
dron, which would not ensure crack-free decompositions.

(a) (b) (c)

Figure 2: 2D diamonds and their octagonal descendant domains.



2 NESTED REFINEMENT DOMAINS

In this Section, we generalize the 2D refinement domains of [5, 1, 3]
to 3D by introducing three families of polyhedra defining nested re-
finement domains. We illustrate the nestedness of these shapes in
Figure 1 by showing how the refinement domain of a single dia-
mond lies in those of its ancestors up to three levels higher.

We define the descendant domain of a tetrahedron in a hierar-
chy of tetrahedra as the limit shape of the domain covered by all
possible descendants generated by conforming bisections. Since all
tetrahedra in a diamond refine concurrently, they share the same de-
scendant domain, and we can equivalently discuss the descendant
domain of a diamond. It is evident from the definition that the de-
scendant domain of a diamond can be defined recursively as the
union of the descendant domains of its children. As such, these
form a nested hierarchy for conforming decompositions.

Within each diamond’s descendant domain, the faces that are
aligned with the coordinate planes are octagonal (or trapezoidal
sections of octagons) and have the same proportions as their two
dimensional counterparts (compare Figure 3b to Figure 2b).

Interestingly, the triangular faces on the boundary of the domain
have a Sierpinski-like fractal refinement. That is, the refinement is
generated through quaternary refinement. However, instead of be-
ing removed, the internal triangles are trisected, and the midpoint is
offset along its normal by a distance of

√
6/6 of the triangle’s edge

length. The indentations formed by this process are cube corners
aligned with the coordinate axes.

The fractal nature of the above descendant domain makes it dif-
ficult to compute with in a top-down manner. As such, we define a
second family of nested refinement domains obtained by taking the
convex hulls of the above shapes, which we refer to as the convex
descendant domains (see Figure 3c). Combinatorially, these poly-
hedra are truncated cuboids (with four beveled edges in one case).

We observe that the descendant domain almost defines a hierar-
chy of nested cuboids. We therefore introduce the bounding box
descendant domains. The dimensions of these cuboids, relative to a
unit 0-diamond (i.e. covering a unit cube), are 3×3×3 (Figure 3d,
left), 3× 3× 2 (Figure 3d, middle, where the shorter dimension is
orthogonal to the bisection edge), and 2×2×2 (Figure 3d, right).

3 CONCLUDING REMARKS

In this paper, we introduce three nested refinement domains for
tetrahedral and diamond hierarchies. The descendant domain, is
the 3D analogue of the octagonal-shaped domains of [5, 1, 3]. How-
ever, in contrast to the 2D case, these descendant domains have a
fractal boundary. We therefore introduce the convex descendant do-
main and bounding box descendant domain refinement hierarchies,
which are easier to compute with at runtime.

These hierarchies have several potential applications to inter-
active volume visualization, which we intend to explore in future
work. As with the 2D case, they can be easily incorporated into a
view–dependent visualization system for frustum culling. Observe
that the bounding box domain, which incorporates the other two
refinement domains, defines a relatively small inflation factor for
each diamond. Thus, only diamonds (or tetrahedra) within a dis-
tance of at least three units from the frustum boundaries need be
checked, where units refer to the scale of the diamond. Further-
more, as pointed out by Blow [2], once a diamond is outside this
distance, its descendants no longer need to be checked.

The bounding box refinement domain has similar implications
for isosurface queries. The range of isovalues covered by all de-
scendants can be conservatively approximated from a non-nested
min/max metric (such as BONO [8]) by considering the isovalue
range of a constant number of cubes.

(a) Three classes of diamonds in 3D

(b) Descendant domains

(c) Convex descendant domains

(d) Bounding box descendant domains

Figure 3: The three classes of diamonds (a) and their corresponding
nested refinement domains (b-d) in 3D.
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