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ABSTRACT
Several algorithms have recently been introduced for morpholog-
ical analysis of scalar fields (terrains, static and dynamic volume
data) based on a discrete version of Morse theory. However, despite
the applicability of the theory to very general discretized domains,
memory constraints have limited its practical usage to scalar fields
defined on regular grids, or to relatively small simplicial complexes.
We propose an efficient and effective data structure for the extrac-
tion of morphological features, such as critical points and their re-
gions of influence, based on the PR-star octree data structure [24],
which uses a spatial index over the embedding space of the complex
to locally reconstruct the connectivity among its cells.

We demonstrate the effectiveness and scalability of our approach
over irregular simplicial meshes in 2D and in 3D with a set of
streaming algorithms which extract topological features of the as-
sociated scalar field from its locally computed discrete gradient
field. Specifically, we extract the critical points of the scalar field,
their corresponding regions in the Morse decomposition of the field
domain induced by the gradient field, and their connectivity. The
spatial index induced by the PR-star octree enables efficient spatial
queries on the topological structure of the scalar field, which we
demonstrate through window queries on the dataset.

1. INTRODUCTION
The rapid increase in the amount of data produced by sensors and
simulations necessitates the creation of efficient and scalable tools
for their analysis. Due to their ability to extract essential features
from data, topological methods have gained increasing importance
in spatial data analysis and scientific visualization. Topological
methods are rooted in Morse theory [17], which is the basis for
defining decompositions of the domain of a scalar field into regions
of influence of the critical points of the field, called Morse and
Morse-Smale complexes. However, Morse theory applies to smooth
functions, while in practical applications we often deal with scalar
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fields that are regularly or irregularly sampled at discrete locations
within a domain. Thus, recent research has focused on combina-
torial topological methods which avoid computing derivatives and,
thus, are beneficial in the presence of noisy data.

Forman’s discrete Morse theory [12] extends Morse theory to cell
complexes. Besides its theoretical contributions, the discrete for-
mulation has practical applications in avoiding high-order critical
points and in permitting the formulation of robust discrete algo-
rithms [13, 15, 20], which overcome the intrinsic limitations of
previous algorithms for approximating Morse complexes [2]. Algo-
rithms based on discrete Morse theory have been developed for reg-
ular grids [15, 20] or for triangle and tetrahedral meshes of limited
size [15]. A challenging problem when dealing with large simplicial
meshes relates to the high memory requirements associated with en-
coding the irregular connectivity among the cells of the mesh. As
such, the need arises for a compact data structure for a simplicial
mesh (e.g. a triangle mesh in 2D, a tetrahedral mesh in 3D) which
allows localized computations as well as efficient navigation.

Topological data structures for simplicial meshes, which encode
the simplices in the mesh in addition to some connectivity relation
among them, become too large when the size of the mesh increases.
Moreover, when applying topological analysis, we need to store
additional information on the critical simplices and on the discrete
gradient field. However, as in many mesh processing operations,
computing the discrete Morse gradient depends only on the local
neighborhood of the mesh vertices. The PR-star octree [24] is an
interesting new approach that derives the local connectivity through
a spatial index on the mesh geometry. Thus, by trading a reasonable
amount of computation at runtime, we can compactly encode all
connectivity relations. A benefit of this approach is that the spatial
index provides a means of understanding the spatial embedding of
the mesh and its associated fields. The PR-star octree can be de-
fined in arbitrary dimensions, but we use it here for triangle meshes
embedded in 2D and for tetrahedral meshes embedded in 3D.

Our first contribution is the extension of the algorithm of Robins et
al. [20] for discrete Morse gradient computation to simplicial meshes
with irregular connectivity. The algorithm in [20] is the only algo-
rithm which extracts the minimal number of critical cells in 2D and
in 3D. Although the implementation in [20] is restricted to regular
grids, their results are proven for more general cell complexes, and
thus are also valid for simplicial meshes. The PR-star octree’s com-
pact encoding of topological connectivity provides a scalable tool



for practical topological analysis of large datasets. Furthermore, it
enables us to define optimized local data structures for processing
the mesh in each leaf node of the octree, since we only generate
the gradient field locally within the domain of the leaf node. This
significantly reduces the memory requirements of our algorithm
compared to state of the art approaches.

The second contribution of our work is an efficient way of extracting
morphological features from the discrete Morse gradient field. The
purpose of computing the discrete Morse gradient field is to extract
critical points, their region of influence, and the way in which they
are connected. Examples of morphological features include: pits
with their basins, peaks with their corresponding mountains, separa-
trices between two mountains or two basins, ridges and valley lines,
and saddle connectors [14]. Such features correspond to collections
of cells in the Morse complexes, defined by the discrete Morse gra-
dient. Here, we show how to extract morphological features from
scalar fields encoded using a PR-star octree. We have developed
an algorithm for navigating on a mesh encoded as a PR-star octree
through adjacencies. An additional benefit of our approach to fea-
ture extraction through the PR-star octree is that it enables localized
spatial queries on the scalar field. Specifically, we do not need to
extract the features of the entire mesh, but we can perform localized
queries, for instance, inside a region of interest in the domain, like
a box, where the computation cost is proportional to the geometry
within the query region.

The remainder of this paper is organized as follows. In Section 2, we
discuss some background notions. In Section 3, we discuss related
work on spatial indexes and on computation of Morse complexes.
Section 4 briefly describes the PR-star quadtree/octree. In Sec-
tion 5, we describe how to perform the computation of the discrete
Morse gradient on the PR-star data structure, while in Section 6,
we discuss morphological queries and how they can be answered
by performing an efficient navigation in the PR-star octree. Sec-
tion 7 presents experimental results, while Section 8 draws some
concluding remarks and discusses current and future developments.

2. BACKGROUND
Morse theory studies the relationships between the topology of a
manifold M and a function f defined on M by considering the
negative gradient flow of f . For a complete description of the Morse
theory, see Milnor [17]. Let f be a C2 real-valued function (scalar
field) defined over a d-dimensional manifold M. A point p ∈M
is a critical point of f if and only if the gradient of f vanishes
at p. Function f is said to be a Morse function if all its critical
points are non-degenerate (the Hessian matrix Hessp f of the second
derivatives of f at p is non-singular). The number i of the negative
eigenvalues of Hessp f is called the index of critical point p. The
corresponding eigenvectors point in the directions in which f is
decreasing. A critical point of index i, 0 ≤ i ≤ d, p is called an
i-saddle, where a 0-saddle is also referred to as a minimum and a
d-saddle as a maximum. If d = 2, there are three types of critical
points, namely minima, saddles and maxima. If d = 3, there are
four types of critical points, namely minima, 1-saddles, 2-saddles
and maxima.

An integral line of a function f is a maximal path that is every-
where tangent to its gradient ∇ f . It follows the direction in which
the function has the maximum increasing growth. Two integral lines
are either disjoint or identical. Each integral line starts at a critical
point of f , called its origin, and ends at another critical point, called
its destination. Integral lines that converge to a critical point p of

index i cover an i-cell called the descending manifold of p. Dually,
integral lines that originate at p cover an (n− i)-cell called the as-
cending manifold of p. The descending manifolds decompose M
into a cell complex, called the descending Morse complex of f on M.
Dually, the ascending manifolds form the ascending Morse complex
of f on M. A Morse function f is called a Morse-Smale function
if and only if each non-empty intersection of a descending and an
ascending manifold is transversal. This means that each connected
component of the intersection (if it exists) of the descending i-cell
of a critical point p of index i, and the ascending (n− j)-cell of a
critical point q of index j, i ≥ j, is an (i− j)-cell. The connected
components of the intersection of descending and ascending cells
of a Morse-Smale function f decompose M into a Morse-Smale
complex. If f is a Morse-Smale function, then there is no integral
line connecting two different critical points of f of the same index.

Forman’s theory [12] is an elegant adaptation of classical Morse the-
ory to functions defined over a cell complex. The main purpose of
Forman’s theory is to develop a discrete setting in which almost all
the main results from Morse theory are valid. This goal is achieved
by considering a function F defined on all cells, and not only on
the vertices, of a cell complex. Here, we define it for a simplicial
mesh Σ, i.e., for a cell complex in which all the cells are simplices.
Intuitively, a function F is a discrete Morse function if for any p-
simplex σ , all the (p−1)-simplices on its boundary have a lower F
value than σ , and all the (p+1)-simplices in its co-boundary have
a higher F value, with at most one exception. If there is such an
exception, it defines a pairing of cells of Σ, called a discrete (or For-
man) gradient vector field V . Otherwise, p-simplex σ is a critical
simplex of index i.

More formally, a function F : Σ→R is a discrete Morse function if,
for every p-simplex σ , the following conditions are satisfied:

#
{

τ
p+1 > σ : F(τ)≤ F(σ)

}
≤ 1

and

#
{

ν
p−1 < σ : F(ν)≥ F(σ)

}
≤ 1.

These inequalities cannot be equalities at the same time [12]. This
means that, for a p-simplex σ , we cannot find simultaneously a
(p−1)-dimensional face ν of σ and a (p+1)-dimensional co-face
τ of σ , such that F(τ)≤ F(σ)≤ F(ν).

A p-simplex σ ∈ Σ is a critical simplex of index p if the following
condition is satisfied:

#
{

τ
p+1 > σ : F(τ)≤ F(σ)

}
= #

{
ν

p−1 < σ : F(ν)≥ F(σ)
}
= 0.

This implies that the absolute minimum of a discrete Morse function
F on a simplicial complex Σ occurs at a vertex, while if Σ is a
triangulation of a closed d-manifold, then the absolute maximum
of F occurs at a d-simplex.

As noted by Forman [12], it is not easy to construct discrete Morse
functions; it is simpler to define a discrete vector field. Intuitively,
a discrete vector field can be viewed as a collection of arrows, con-
necting a p-simplex of Σ to an incident (p+1)-simplex of Σ, such
that each simplex is a head or a tail of at most one arrow. Critical
simplices are those simplices that are neither the head nor the tail
of any arrow. A discrete vector field V is a Morse gradient vector
field if there are no closed V -paths in V . A V -path is a sequence
σ0,τ0,σ1,τ1, ...,σr+1 of p-simplices σi and (p+ 1)-simplices τ j,
i = 0, ...,r + 1, j = 0, ...,r, such that (σi,τi) ∈ V , τi > σi+1, and
σi 6= σi+1.



There is a correspondence between discrete Morse functions and
discrete gradient vector fields. Namely, for each discrete Morse
function F , a discrete gradient vector field V can be constructed.
A discrete gradient vector field V of F is a vector field which is
obtained from F by noticing that non-critical simplices come in
pairs, and by drawing an arrow from a p-simplex σ to a (p+ 1)-
simplex τ if τ > σ and F(τ) ≤ F(σ). If F is a discrete Morse
function, then each simplex of Σ is the head or the tail of at most
one arrow, and the critical simplices are those simplices that are
neither the head nor the tail of any arrow.

3. RELATED WORK
A variety of hierarchical spatial indexes have been proposed in the
literature for points, polygonal maps, boundary representations of
objects, triangle and tetrahedral mesh [21]. Hierarchical spatial in-
dexes for points in the Euclidean space, such as PR quadtrees/octrees
and PR kd-trees, contain the points only in their leaf nodes and, thus,
the shape of the tree is independent of the order in which the points
are inserted. The PMR quadtree [19] is a spatial index for a collec-
tion of edges in the plane (not necessarily forming a polygonal map).
The family of PM quadtrees [22] extend the PR quadtree to repre-
sent polygonal maps considered as structured collections of edges,
and differ in their refinement rules. In [7] a hierarchical spatial in-
dex for triangle meshes is proposed which extends a PM-quadtree.
The triangles (instead of the edges) in the mesh are indexed by the
leaf nodes of the quadtree. PM quadtrees have also been extended
to index the boundary of a polyhedral object in space [4, 18]. The
subdivision rules are similar to those of PM-quadtrees but the faces
of the object are considered instead of the edges of the mesh. In [8],
a collection of spatial indexes for tetrahedral meshes, called tetra-
hedral trees are introduced. One of the tetrahedral trees extends the
PMR quadtree by indexing the tetrahedra in the mesh instead of the
edges of the map, while another tetrahedral tree is a direct extension
of the PM octree to tetrahedral meshes.

In [24], a fundamentally and conceptually different data structure
for tetrahedral meshes, called the PR-star octree, has been pre-
sented, in which the hierarchy is not a spatial index on the mesh
(i.e. to support efficient spatial queries such as point location), but,
rather, is a tool to support efficient retrieval of topological connectiv-
ity (i.e. for topological queries), thus encoding a minimum topology
and trading spatial relations for topological ones.

Other approaches propose localized computations by using a spatial
index to reduce memory requirements for out-of-core [5] or memory
intensive mesh processing [9], or by developing a reduced data
structure for a simplicial meshes [3]. Cignoni et al. [5] introduce an
external memory spatial data structure for processing large triangle
meshes to support compact out-of-core processing of large triangle
meshes. Dey et al. [9] use an octree to index a large triangle mesh
for localized Delaunay remeshing. In [3], a very light data structure
for computing a Delaunay simplicial mesh in medium dimensions
(up to 6 dimensions) is proposed which encodes only the edges of
the mesh globally and reconstructs the connectivity only locally
when required by the computation.

There have been basically two approaches in the literature to ex-
tend the results of Morse theory and represent Morse and Morse-
Smale complexes in the discrete case. One approach is discrete
Morse theory [12], that we have reviewed in Section 2. The other
approach, introduced in [11] in 2D, and in [10] in 3D, is based
on Banchoff’s extension of Morse theory to piecewise-linear mani-
folds and functions [1]. It provides a combinatorial description of

the Morse-Smale complex of a function f defined at the vertices
of a simplicial mesh. Surveys of algorithms for computing Morse
and Morse-Smale complexes in 2D and 3D based on this theory and
based on a watershed approach can be found in [2, 6].

Recently, there has been a lot of attention on algorithms rooted
in Forman’s discrete Morse theory since they are generally more
efficient from a computational point of view than the previous ap-
proaches, which try to simulate the behavior of a continuous func-
tion. The problem of computing an optimal Forman gradient vector
field V on a 2D simplicial mesh has been discussed in [16]. King et
al. [15] present an algorithm to compute a Forman gradient vector
field V on a scalar field f defined on the vertices of a 3D simplicial
mesh. The same algorithm can be applied to 2D simplicial meshes
embedded in 3D. In [13], Gyulassy et al. use Forman theory with a
divide-and-conquer technique to compute an approximation of the
Morse-Smale complex of a scalar field f defined on the vertices of
a regular 3D grid. It is not guaranteed that the constructed discrete
gradient vector field V , if applied to a triangulated domain, points
in the direction in which the scalar field f is decreasing. In [20],
Robins et al. define an algorithm to compute the Forman discrete
vector field on 2D and 3D regular grids, and they show that the
result produced is optimal in the sense that the discrete gradient
vector field has a minimal number of critical cells.

4. PR-STAR QUADTREES AND OCTREES
In this section, we describe the PR-star data structures [24]: PR-
star quadtrees for triangle meshes in 2D, and PR-star octrees for
tetrahedral meshes in 3D. In contrast to topological data structures,
which explicitly encode the connectivity among mesh elements, or
to spatial data structures, which index the elements for efficient
spatial queries, PR-star quadtrees and octrees use the spatial index
induced by a quadtree (in 2D) or an octree (in 3D) to efficiently
generate local application-dependent topological data structures at
runtime. In [24], algorithms have been presented to extract some
topological relations on the simplices based on the PR-star tree, but
it has not been shown how to efficiently navigate in a mesh through
adjacencies when using a PR-star tree.

The PR-star tree is based on the Point Region quadtree (PR quadtree)
[21], which is a spatial index on a set of points P in a d-dimensional
domain. The domain decomposition is controlled by a single param-
eter kv which determines the maximum number of points indexed
by a leaf node. The insertion of a new point into a full leaf in
the tree causes the leaf to split and its indexed points to be redis-
tributed among its children. Thus, the domain decomposition of a
PR quadtree is independent of the insertion order of its points.

The PR-star quadtree/octree for a triangle/tetrahedral mesh Σ con-
sists of (a) an array P of Σ’s vertices, which encode the geometry
of the mesh; (b) an array T of triangles (in 2D) or tetrahedra (in
3D). Each element in T is encoded in terms of the indices of its
three/four vertices within P; (c) an augmented PR quadtree/octree
N, whose leaf nodes index a subset of vertices from P, as well as
all the elements from T that are incident in these vertices.

We use a more compact representation for the leaves of the PR
quadtree/octree compared with [24], where we exploit the spatial
locality provided by the tree through a reindexing of arrays P and T .
Besides the hierarchical information associated with the tree (e.g.
pointers to the parent node and to the set of children nodes), each
leaf node n encodes: the range of the indices vstart and vend in P
of the vertices in n; the range of the indices tstart and tend in T of



the triangles (tetrahedra) that are completely contained in n; and a
pointer to a list of the remaining elements from T that are incident
in these vertices i.e. they have at least one vertex outside the domain
of n.

The basic paradigm for performing operations on a mesh encoded
as a PR-star quad tree/octree is to locally process the mesh in a
streaming manner by iterating through the leaf nodes of the tree.
For each leaf node n, a local application-dependent data structure
is built, which is then used to process the local geometry. After we
finish processing node n, we discard the local data structure and
move on to the next node.

The basic ingredients in any data structure which encodes a mesh
is the representation of a suitable subset of the topological rela-
tions among the simplices. For example, to build the local Vertex-
Triangle relation (Vertex-Tetrahedron relation) for the vertices Pn in
a node n, i.e., the set of triangles (tetrahedra) incident in each vertex
v of Pn), the algorithm iterates through the vertices of the triangles
(tetrahedra) Tn in n. For each vertex v of a triangle (tetrahedron) t
indexed by n, we add the index of t in T to the list of triangles (tetra-
hedra) incident in v. Since the indexed vertices are in contiguous
positions in the global vertex array, and there are at most kv vertices
associated with leaf node n of N, the local data structure is an ar-
ray of size kv. Each position in this array corresponds to a vertex
indexed by n and points to an (initially empty) list of indices from
T . For simplicity, in the remainder of the paper, we will always use
the term PR-star octree to indicate a quadtree or an octree.

5. COMPUTATION OF THE DISCRETE
MORSE GRADIENT FIELD

In this section, we adapt the algorithm of Robins et al. [20] for ex-
tracting the discrete Morse gradient field to simplicial meshes. The
algorithm by Robins et al. is defined for cubical cell complexes and
has been applied to homology computation of 2D and 3D images.
The optimality results (on the minimal number of critical cells)
proven in [20] hold also for cell complexes, and thus for simplicial
meshes. In our work, we have implemented two versions of the
algorithm for simplicial meshes; one using a compact topological
data structure to encode the mesh and the other using the PR-star
octree, described in Section 4. For the former, we use the Indexed
data structure with Adjacencies (IA data structure), which encodes
only the vertices and the top simplices of the mesh (triangles in 2D,
tetrahedra in 3D), and the adjacencies of the d-simplices along their
common (d−1)-simplices (edges in 2D, triangles in 3D).

The discrete Morse computation algorithm takes as input a simpli-
cial mesh and the field values given at the vertices of the mesh and
outputs a list C of the critical simplices as well as the discrete gra-
dient field encoded as a collection of arrows from an i-dimensional
simplex to its paired (i+1)-dimensional simplex. This is generated
via homotopic expansions of the lower star of each vertex of the
input mesh. The lower star of a vertex v consists of the simplices σ

incident in v with fmax(σ) = f (v) and fmax(σ) = max
p∈σ

f (p). Since

pairing occurs only between simplices in the same lower star, each
lower star can be treated independently. Figure 1 illustrates a dis-
crete gradient vector field computed on a simplified terrain dataset.

From a data structure point of view, the algorithm requires an effi-
cient computation of the star of a vertex v, i.e., an efficient way to
extract the set of simplices incident at v. Our implementation based
on the PR-star octree exploits the capability of the PR-star octree in

Figure 1: Example of a discrete gradient vector field on a trian-
gulated terrain. Paired simplices are marked with arrows from
the origin to its destination. Critical simplices are marked with
blue (minima), green (saddle) and red (maxima) dots.

efficiently extracting the simplices incident in a vertex, as discussed
in Section 4.

When the scalar field is defined over a cubical cell complex (regular
grid) [20, 14], arrows defining the gradient vector can be efficiently
encoded using a grid with twice the resolution along each direction.
We now describe our data structure for encoding the vector field
map for scalar fields defined on simplicial meshes. A vector pair
(σ ,τ) is a mapping from an i-simplex σ to an (i+ 1)-simplex τ ,
which we denote as V [σ ] = τ . In both our representations (IA
data structure and PR-star octree), we have an efficient index on
the vertices P and on the top simplices T (i.e. the triangles in 2D
or the tetrahedra in 3D), but not on the faces of the top simplices
(i.e. the edges in 2D and 3D, and the triangular faces in 3D). Thus,
we encode each map of vector pairs differently, depending on the
dimension of the mesh and of the mapped elements.

In 2D, there are two types of maps, V01, from vertices to edges, and
V12, from edges to triangular faces. V01 : v→ e is encoded as a map
from the index in P of v to the index in P of the other endpoint of
e, while V12 : e→ f is encoded as a map from a pair of indices in P
of the endpoints of e to the index in T of f , requiring, respectively,
two, and three references per gradient pair.

In 3D, there is an additional map V23, from faces to tetrahedra.
V01 : v→ e is encoded as a map from the index in P of v to the index
in P of the other endpoint of e, V12 : e→ f is encoded as a map
from a pair of indices in P of the endpoints of e to the index in P
of the vertex of f not incident in e, and V23 : f → t is encoded as a
map from a triple of indices in P of the endpoints of e to the index
in T of t, requiring, respectively, 2, 3 and 4 references per arrow.

Since the vector field computed by the algorithm is a discrete Morse
gradient vector field, each i-simplex of Σ is paired with only one
(i±1)-simplex encoded in one of the maps, or it is not paired to any
other simplex and stored in the set of critical simplices. The critical
simplices are encoded in different sets based on their dimension.
Each simplex is represented, similarly to the representation into the
gradient vector, through one index if it is a vertex or a top simplex
(triangle in 2D or tetrahedron in 3D), or by using two indices into
P for edges and three indexes for triangles (in 3D).

6. LOCALIZED FEATURE EXTRACTION



In this section, we discuss how we use the local discrete gradient
field from Section 5 to extract morphological features from 2D and
3D scalar fields indexed by a PR-star octree.

Morphological features are used to analyze the topology of the
scalar field. As such, these features are typically understood collec-
tively either by analyzing all features of a given dimension, (e.g. the
1-skeleton of the Morse complex, or of the Morse-Smale complex)
or by combining the features within a local region (e.g. through a
window query). Examples of morphological features are pits with
their basins, peaks with their corresponding mountains, separatrices
between two mountains or two basins, ridges and valley lines, sad-
dle connectors. Such features correspond to collection of cells in
the Morse complexes, defined by the discrete Morse gradient vector
field. A complete set of morphological features for 3D scalar fields
is presented in [14].

We first describe the general algorithm for extracting a single fea-
ture, i.e. the region within the Morse complex corresponding to a
single critical point of the field. We then describe our streaming
algorithm for extracting all features of a given dimension through
a traversal of the PR-star octree leaf nodes. Finally, we describe
an adaptation that illustrates the power of our spatial approach.
Namely, through a simple modification, we can efficiently support
window queries on the topological features, by extracting the region
of influence of all the critical points of a certain kind within a speci-
fied window on the field domain (a rectangle for 2D scalar fields, a
box in the 3D case).

6.1 Extracting morphological features
The morphological features of a scalar field are defined by the as-
cending and descending manifolds of its critical points. For exam-
ple, for a 2D scalar field, the descending 2-manifolds define the
regions of influences of the maxima, the descending 1-manifolds
the regions of influence of the saddle points and their connection
to the minima. For a 3D scalar field, the descending 3-manifolds
define the regions of influences of the maxima, the descending 2-
manifolds the regions of influence of the 2-saddles, the descend-
ing 1-manifolds the regions of influence of the 1-saddles, and their
connections to the minima. The reverse holds for the ascending
manifolds. For instance, the ascending 2-manifold of a minimum in
a 2D scalar field is the basin associated with it. The i-dimensional
features are then expressed as collections of i-simplices from the
underlying mesh that cover a descending or ascending i-manifold.

Generally an ascending or a descending i-manifold feature is ex-
tracted by traversing the arrows of the discrete Morse field V and by
collecting all the i-simplices in the ascending/descending i-manifold.
For example, for a 2D scalar field discretized as a triangle mesh, ex-
tracting a descending 2-manifold, which corresponds to a maximum
(i.e., a triangle f in the mesh) corresponds to collecting all the trian-
gles belonging to the 2-manifold obtained by navigating the vector
field starting from f (see Figure 2a). Similarly, extracting the 1-
manifold corresponding to a saddle (i.e., an edge e in the mesh)
corresponds to a collection of edges belonging to the 1-manifold
obtained by navigating V starting with e (see Figure 2b).

The extraction algorithm can be defined in a dimension independent
manner. We focus here, for brevity, on the extraction of descending
i-manifolds, which are the region of influence of i-saddles. Recall
that 0-saddles are minima and d-saddles are maxima, where d is the
dimension of the scalar field (and thus of the Morse complexes). Let
β be a critical i-simplex. The extraction of its descending i-manifold

Algorithm 1 EXTRACTDESCENDINGMANIFOLD(β )

Require: β is a critical i-simplex, 0 < i≤ d
Require: Q is a queue of (i−1)-simplices
Require: Σi is a simplicial i-complex containing the i-simplices in

the extracted feature i-manifold
1: // Initialize queue
2: for all facets σ of β do
3: Q.enqueue(σ )
4: // Iterate through (i−1)-simplices in queue
5: while Q is not empty do
6: σ ← Q.pop()
7: if ISTAIL(σ ) then
8: τ ← HEAD(σ )
9: Σi.add(τ)

10: for all facets σ ′ of τ , where σ ′ 6= σ do
11: Q.enqueue(σ ′)
12: return Σi

(a) (b)

Figure 2: Example of features extracted from a synthetic data
set formed by a set of Gaussian surfaces intersecting a plane.
The descending 2-manifolds are shown in (a) and the descend-
ing 1-manifolds in (b). Blue, green and red dots correspond to
minima, saddles and maxima, respectively.

is described in Algorithm 1, where ISTAIL(σ ) is a predicate that
returns TRUE if (i−1)-simplex σ is a tail of some gradient pair, and
FALSE otherwise. HEAD(σ ) returns the head of the gradient arrow
(i.e. an i-simplex) in which σ is the tail. Since there are no cycles
in the gradient field, the algorithm is guaranteed to terminate and
the set of visited i-simplices forms the i-manifold corresponding to
critical i-simplex β .

The input to the algorithm is a critical simplex β and a discrete
Morse gradient field V . The output is a simplicial i-complex cover-
ing an i-cell of the descending/ascending Morse complex (i.e., an
i-manifold). To extract features of the ascending Morse complex
we have to invert the gradient navigation.

6.2 Streaming feature extraction
In this section, we describe our streaming feature extraction algo-
rithm, which extracts the entire set of i-dimensional features from
the mesh Σ endowed with a scalar field and indexed by a PR-star
octree N. Our algorithm extracts all such features in a single pass
through the octree leaf nodes. Upon completion of the algorithm,
we generate a simplicial i-complex consisting of the simplices cov-
ering the i-dimensional feature cells.

In contrast to the description above, which assumes the existence



of a global gradient vector field, when processing an octree node n,
we only generate a local vector gradient field VLOCAL involving the
simplices in the lower star of the indexed vertices Pn. Thus, we must
encode auxiliary data structures to maintain a subset of the gradient
vector field generated by previous octree nodes. Furthermore, since
not all paths can be fully extracted locally, we defer the completion
of these features until we can visit such nodes. This is accomplished
by saving the terminal explored simplex on these dangling paths.

By analyzing Algorithm 1, we see that each arrow in the gradient
field is visited at most once, i.e. by the extraction traversal initialized
by its critical simplex. Thus, our auxiliary data structure maintains
the set of unvisited arrows from the global gradient field that point
to i-simplices, which we denote as VGLOBAL. When a gradient ar-
row from VGLOBAL is visited during the path traversal started from
another octree leaf node, it is removed from the map.

The second auxiliary data structure ΣDANGLE is used to continue
paths begun while processing previous octree nodes. and encodes
the terminal simplices visited along dangling paths. Specifically, we
encode this data structure as a map from the index of the leaf node
in which the interrupted path will continue to the set of i simplices
terminating the dangling path.

Our local algorithm for extracting i-dimensional features from each
octree leaf node n performs four steps:

1. Gradient vector computation. We begin by generating the local
gradient vector field VLOCAL for leaf octree node n. This con-
sists of the arrows defined by the lower stars of Pn, the vertices
indexed by n.

2. Dangling path expansion. In order to minimize the global mem-
ory usage, we first try to complete the paths initiated by previous
octree nodes. For each i-simplex σ in ΣDANGLE[n], whose gradi-
ent is stored in VGLOBAL, we continue the gradient path within
n. After processing each arrow from the gradient vector field
(VLOCAL or VGLOBAL), we remove it from its associated gradient
field.

3. New path expansion. Once all the dangling paths have been
expanded, we begin extracting the features associated with the
critical i-simplices indexed by n. This traversal uses (and then
discards) the arrows from both VLOCAL or VGLOBAL, as appropri-
ate. If an expanding path at i-simplex σ reaches the boundary
of n and continues into unvisited octree node n′, we add σ to
ΣDANGLE[n′].

4. Gradient vector conversion. Finally, after all the paths inside
the leaf node have been completed (because they reached the
destination critical simplices or the boundary of the leaf node)
the unvisited gradient pairs from VLOCAL that terminate in an i-
simplex are added to VGLOBAL . Note that only the <(i-1)-simplex,
(i)-simplex> gradient pairs have to be saved.

The output produced by our feature extraction varies depending on
the feature dimension. Since the top simplices already provides us
with a globally consistent mapping, the output of the d-manifold
extraction for the descending Morse complex is an array of size
|T | of labels, where the label of each d-simplex is the index of its
associated critical d-simplex. For the remaining i-manifolds, the
output of our extraction is a non-manifold simplicial i-complex in
which each i-simplex is encoded as a tuple of i+ 1 vertices and a
label indicating its corresponding critical point.

We note that, while the above algorithm describes the extraction of a

single set of features (e.g. the i-dimensional features), we can easily
modify the algorithm to concurrently extract multiple feature sets,
thereby leveraging the computationally expensive generation of the
gradient vector field. For example, we can simultaneously extract
the d sets of features encompassing the entire Morse complex.

7. EXPERIMENTAL RESULTS
We have compared two implementations of the gradient compu-
tation and of the morphological feature extraction, one using the
Indexed data structure with Adjacencies (IA data structure) and the
other using the PR-star octree, and we have validated our approach
across two type of extractions: one based on global feature extrac-
tion and one based on a windowed feature extraction inside a region
of interest. We have performed experiments on fourteen tetrahedral
meshes whose sized range from 1.5 million to to 35 million tetrahe-
dra, and on three triangular meshes whose sizes range from between
4 million to 19.5 million triangles. The hardware configuration used
is an Intel i7-2600K CPU at 3.20Ghz with 16 GB of RAM.

First, we have extracted the discrete Morse gradient vector field,
and we have evaluated both the storage costs of the underlying data
structures (IA and PR-octree) as well as the storage costs and time
requirements for computing the gradient on each of them, as shown
in Table 1. The first column of Table 1 shows the value of the
bucket threshold kv used for the PR-octree. Changing the value of
kv for the PR-star octree does not significantly influence the storage
requirements for feature extraction, and, thus, we only present the
results for a single value of kv. For the sake of brevity, we report
on a representative subset of the results obtained, we describe the
results for two highly irregular tetrahedral meshes (FIGHTER2 and
F16_DENSITY), three large tetrahedral meshes with semi-regular
connectivity extracted from a regular grid using regular simplex
bisection [23] (BONSAI, VISMALE and FOOT), and three terrain
datasets (MAUI, BAIA and PUGET). Our experiments show (column
MESH in Table 1) that the PR-star requires approximately 60% the
space of the IA for encoding the mesh.

The gradient generation algorithm for the PR-star is entirely local,
and uses constant storage with respect to the IA data structure (i.e, a
fraction of one percent). We can see the efficiency of the algorithm
from the reduced generation times achieved by the PR-star data
structure. Despite having to reconstruct the (lower) star of every
vertex, we achieve a saving between 10% to 30% since we do not
store the global gradient field. We achieved slightly better timing
performance for lower values of kv (not reported in Table 1).

In the rightmost columns of Table 1 we show the storage costs and
the timings for each independent feature extraction. We show an
example of global feature extraction for a triangulated terrain in
Figure 3.

Global storage costs are lowest for the PR-star when extracting d-
manifold features, (3-manifolds in 3D and 2-manifolds in 2D), since
all entries in the global structures are guaranteed to be visited and
removed at some point during the navigation. For 3-manifold ex-
traction the PR-star uses between 1% to 30% of the storage needed
by the IA, while for 2-manifolds, it uses approximately 30% of the
IA’s storage for tetrahedral meshes, and between 15% and 30% for
triangle meshes. For 1-manifold extraction, it uses only 6% of the
IA’s storage for tetrahedral meshes and around 25% for triangle
meshes. If we consider the entire storage required by the data struc-
tures for encoding the mesh and by the auxiliary representations
used during computation of the gradient and for the extraction of



the feature, PR-octree implementation uses from 30% to 40% less
memory than an IA-based approach.

In terms of extraction times for the sets of i-manifolds, the PR-star
requires from 3% to 35% less time for 3-manifolds. For 2-manifolds
extraction, we obtain similar timings on the smaller meshes in our
dataset, while for larger meshes, the PR-star is faster, requiring at
most 30% less time. For 1-manifold extraction, we found the PR-
star to be slower than the IA. We note that this step is generally quite
fast (on the order of hundredths to tenths of a second), and is several
orders of magnitude faster than gradient extraction, which must
be performed first. When we compare the relative performances
across the whole feature extraction process (gradient computation
plus feature extraction), the PR-star is 5% to 30% faster than the
IA.

The above streaming algorithm can be modified to enable efficient
windowed feature extraction queries on the field morphology, in
which the gradient vector only needs to be extracted within a local
neighborhood, such as an axis-aligned box. Specifically, we extract
the gradient vector field for all the nodes, in the PR-star octree, that
intersect the window, and extract the i-dimensional features for all
critical simplices within the window. In this query, the PR-star im-
plementation is clearly superior to the IA one since it only needs to
compute a subset of the gradient vector, while the IA implementa-
tion has to compute the entire gradient vector, even if a small part
is needed to execute the query. Our experiments (not reported here
for brevity) show that the PR-star octree uses on average from 80%
to 99% less memory than the IA-based implementation, depending
on the window size.

8. CONCLUDING REMARKS
We have introduced an efficient tool based on the PR-star octree
for extracting morphological features from scalar fields defined on
irregular simplicial meshes in 2D and 3D, and for computing its
Morse gradient field in a streaming manner.

We have compared the gradient computation and feature extraction
algorithms to a compact state of the art topological data structure,
the IA data structure. Our experiments indicate that the PR-star
implementation is significantly more efficient in terms of storage
and computation with respect to the IA data structure when extract-
ing morphological features on the whole domain, and it completely
outperforms the latter when extracting such features on a portion
of the domain. One of the major limitations of existing methods
for morphological analysis is due to the lack of memory-efficient
implementations. This reduces their feasibility for real-world appli-
cations. We believe that the combination of spatial indexing with
scalar field analysis can lead to many fruitful discoveries in the field.

In our current and future work, we plan to explore several direc-
tions. We plan to perform a parallel implementation of the gradient
computation algorithm, since the processing of the lower stars of
the vertices can be done independently.

The output of our queries is a collection of i-manifolds, each ex-
pressed as a ‘soup of simplices’ of the appropriate dimension. It
would be useful to also generate the connectivity of the extracted
ascending or descending Morse complex. Since the Morse complex
is spatially embedded, we would like to index this extracted com-
plex with an augmented PR-star data structure. This will enable us
efficiently process the extracted mesh, e.g. to perform topological
cancellations on the complex for efficient noise removal.
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