
Accelerated Signed Distance Queries for
Performance Portable Multi-Material Simulations

Jordan Backes†, Evan DeSantola∗, Advisors: George Zagaris‡, Kenneth Weiss‡, Matt Larsen‡, Cyrus Harrison‡
† (Co-author) Electrical and Computer Engineering, University of Missouri
∗ (Co-author) Computer Science Department, Carnegie Mellon University

‡ (Advisor) Lawrence Livermore National Laboratory

Abstract—Signed distance is commonly employed to numeri-
cally represent material interfaces with complex boundaries in
multi-material numerical simulations. However, the performance
of computing the signed distance field is hindered by the com-
plexity and size of the input. Recent trends in High-Performance
Computing architecture consist of multi-core CPUs and acceler-
ators that collectively expose tens to thousands of cores to the
application. Harnessing this massive parallelism for computing
the signed distance field presents significant challenges. Chief
among them is the design and implementation of a performance
portable solution that can work across architectures. Addressing
these challenges to accelerate signed distance queries is the
primary contribution of this work. Specifically, in this work we
employ the RAJA programming model, which provides a loop-
level abstraction that decouples the loop-body from the parallel
execution and insulates application developers from non-portable
compiler and platform-specific directives. Implementation and
performance results are discussed in more detail.

I. INTRODUCTION

Recent trends in high-performance computing architecture
consist of a combination of multi-core CPUs and accelerators
that collectively expose tens to thousands of cores to the
application. This started with Roadrunner (IBM-Cell), the
first petascale supercomputer, and has continued with Titan
(NVIDIA-GPU) and more recently with the upcoming Trinity
(Intel-Xeon Phi) and Sierra (NVIDIA-GPU) supercomputers.
Currently over 12% of the Top 500 supercomputers incorpo-
rate accelerators1 which are an important component in the
roadmaps for supercomputers leading to the exascale era.

The focus of this work is on computing signed distances to
material boundaries in the context of multi-material physics
simulations. Signed distances are a common implicit shape
representation in scientific computing and they been suc-
cessfully employed to reconstruct surfaces in the Volume of
Fluids (VOF) method and in Immersed/Embedded Boundary
techniques, among others. While the spatial complexity and
input size of the material boundaries impact the performance
of signed distance computation, much of the underlying com-
putation is amenable to parallelization.

Harnessing the massive parallelism of these accelerators for
computing signed distances can yield significant performance
boosts but presents significant challenges. Chief among them,
developing a portable solution across several emerging archi-
tectures is non-trivial due to the evolving HPC landscape,

1According to the 47th edition of the Top500 list of the world’s supercom-
puters released June, 2016. Available from http://www.top500.org.

(a) BVH subdivision (b) Signed distance field on 323 grid

Fig. 1. Signed distance of generic jet configuration (∼375K surface elements).

where hardware architectures and programming models are
changing concurrently.

In this work, we employ the RAJA performance portabil-
ity programming model2, developed at Lawrence Livermore
National Laboratory, to parallelize the computation of the
signed distance field. The RAJA programming model pro-
vides a loop-level abstraction that decouples loop bodies from
their execution strategy and insulates application developers
from non-portable compiler and platform-specific directives.
The next section presents a summary of our implementation,
parallelization strategy and preliminary results.

II. ACCELERATED SIGNED DISTANCE

Given a material Ωi defined by an oriented material interface
boundary ∂Ωi the signed distance φi from an arbitrary point
x to ∂Ωi is defined in terms of the minimum distance d:

φi(x) =


−d, if x ∈ Ωi (inside)
0, if x ∈ ∂Ωi (on boundary)
+d, if x 6∈ Ωi (outside)

(1)

Geometric approaches for querying the signed distance
function φi(x) commonly employ spatial acceleration data-
structures to minimize the search space of the algorithm, i.e.,
the number of surface elements to check for each point. We
employ a Bounding Volume Hierarchy (BVH) to partition the
surface elements of the material (see Figure 1).

A. Parallel Implementation using RAJA

The BVH traversal and signed distance computation for
each point are independent and can be executed in parallel.

2RAJA URL: https://github.com/LLNL/RAJA



typedef RAJA::omp_parallel_for_exec
DefaultOMPPolicy;

RAJA::forall<DefaultOMPPolicy>
(0,nnodes,[=](int index){
quest::Point<double,3> pt;
umesh->getMeshNode(index, pt.data());
phi_store[index] = sd->computeDistance(pt);
double dist = phi_store[index];
phi_union[index] = std::min(dist,

phi_wing[index]);
} );

Listing 1. Query loop using default OpenMP thread assignment strategy.

typedef RAJA::IndexSet::ExecPolicy<
RAJA::omp_parallel_for_segit,
RAJA::simd_exec> IndexSetPolicy;

RAJA::forall<IndexSetPolicy> >
(idxSet,[=](int index){
quest::Point<double,3> pt;
umesh->getMeshNode(index, pt.data());
phi_store[index] = sd->computeDistance(pt);
double dist = phi_store[index];
phi_union[index] = std::min(dist,

phi_wing[index]);
});

Listing 2. Query loop using IndexSet thread assignment strategy.

This observation led us to the straightforward parallel imple-
mentation of the inner loop illustrated in Listing 1.

We conducted a performance evaluation of this paralleliza-
tion strategy using a RAJA OpenMP execution policy on a
single compute node consisting of an Intel Xeon CPU @2.6
GHz equipped with 16 cores and 256GB of memory.

Although this simple parallelization strategy improved per-
formance over serial execution, it also lead to significant load
imbalance depending on the orientation of the surface mesh
with respect to the query point. In particular, query points
in some regions needed to consider a much larger set of
candidate surface elements (triangles) than points in other
regions. Figure 2(a) shows the total number of triangles that
each of the 16 threads checked in a given cycle using the
default OpenMP thread assignment strategy.

To address load imbalance, we used the RAJA program-
ming model’s IndexSet abstraction to partition the iteration
space into contiguous chunks, called Segments. We used a
different RAJA execution policy to assign these Segments to
threads in a round-robin fashion. Figure 2(b) shows how this
strategy, illustrated in Listing 2, improved the load balance
between threads. Strong and weak scaling results for our
initial and load-balanced implementations are summarized in
Figure 3. After load-balancing, we achieved a 12X speedup
over the serial version. The final poster will also include
performance results from GPUs.

(a) Before load balancing (b) After load balancing

Fig. 2. Number of point-triangle intersection tests per thread on a 16 thread
run before (a) and after (b) load-balancing with RAJA IndexSets

III. CONCLUSION & FUTURE WORK

The work presented herein is geared towards accelerating
signed distance queries to numerically represent material in-
terface boundaries in multi-material simulations. Our approach
employs the RAJA programming model to achieve portable
performance across different architectures. Our preliminary
performance evaluation indicated that there was a significant
load imbalance among threads. By leveraging the RAJA
IndexSet abstraction, we developed a strategy to address the
load imbalances and improve the overall performance of our
algorithm. Future work is focused on porting and evaluating
the performance of our implementation on GPUs.

ACKNOWLEDGEMENT

The authors would like to acknowledge support by the
Institute for Scientific Computing Research (ISCR) summer
scholar program for making this work possible. In addition,
the authors would like to thank Rich Hornung and Rob Neely,
from Lawrence Livermore National Lab, for their keen interest
in this work and Will Killian from University of Delaware
for useful discussions and help with RAJA. This work was
performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344. LLNL-POST-698437



(a) Strong scaling timing (b) Strong scaling speedup

(c) Weak scaling timing (d) Weak scaling efficiency

Fig. 3. Preliminary performance results: Strong and weak scaling.


