
Videos	and	Other	Media	

Future	Work	

Accelerated	Signed	Distance	

Accelerated	Signed	Distance	Queries	For	Performance	Portable	Physics	Codes	
Jordan	Backes	(Co-Author)					Evan	DeSantola	(Co-Author)				George	Zagaris	(Advisor)				Kenneth	Weiss	(Advisor)				MaFhew	Larsen	(Advisor)				Cyrus	Harrison	(Advisor)	

This	work	was	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	Lawrence	Livermore	NaPonal	Laboratory	under	Contract	DE-AC52-07NA27344.	LLNL-POST-698437	
	

Acknowledgements	
The	authors	would	like	to	acknowledge	support	by	the	
InsPtute	for	ScienPfic	CompuPng	Research	(ISCR)	
Summer	Scholar	Program	for	making	this	work	
possible.	In	addiPon,	the	authors	would	like	to	thank	
Rich	Hornung	and	Rob	Neely,	from	LLNL,	for	their	keen	
interest	in	this	work	and	Will	Killian,	from	University	of	
Delaware	for	useful	discussions	and	help	with	RAJA.	•  We	query	the	BVH	subdivision	to	reconstruct	exact	signed	distances	

from	an	arbitrary	set	of	points	to	the	surface.		
•  Queries	to	the	BVH	subdivision	are	independent	and	therefore	ripe	for	

the	parallelizaPon	enabled	by	next	generaPon	architectures.	

•  We	employed	a	Bounding	Volume	Hierarchy	acceleraPon	structure	
to	parPPon	the	surface	elements	of	our	test	configuraPon	

BVH	subdivision	of	a	generic	jet	 Signed	Distance	field	on	323	grid	

Union	Signed	Distance	of	our	
wing-store	configuraPon	

SpaPally	varying	cost	of	querying	
the	BVH	representaPon	

•  Use	the	RAJA	Performance	Portability	Layer	to	

•  Evaluate	our	implementaPon	on	different	
architectures,	such	as	machines	equipped	with	GPUs	
or	many-core	processors,	such	as	the	Xeon	Phi	

•  Exploring	and	comparing	our	implementaPon	with	
other	programming	models	

•  Improve	our	BVH	queries	through	

•  ImplemenPng	a	Surface	Area	HeurisPc	(SAH)	to	the	
BVH	to	achieve	a	more	opPmal	BVH	decomposiPon	

•  CompacPon	of	internal	BVH	data	layout	to	opPmize	
cache	uPlizaPon	and	overall	memory	footprint	

RAJA	ParallelizaPon	and	Portability	

Load	Balancing	

AIer	load	balancing:		IndexSet	remapping	of	threads	to	query	
points	(leg,	colored	by	Thread	ID)	and	the	number	of	triangles	
(in	millions)	tested	by	each	of	16	threads	(right)	on	same	grid	
	

•  We	used	the	number	of	triangles	tested	per	thread	as	a	hardware	independent	workload	metric	
•  We	discovered	a	510%	difference	between	the	fastest	and	slowest	threads	in	the	default	RAJA	parallelizaPon.		
•  This	was	reduced	to	0.3%	ager	we	applied	RAJA	IndexSets	to	change	the	thread	parPPoning.	

Before	load	balancing.	Default	thread	mapping	for	a	grid	of	
275k	query	points	(leg,	colored	by	Thread	ID)	and	the	number	
of	triangles	(in	millions)	tested	by	each	of	16	threads	(right)		

Signed distance is commonly employed to numerically represent material
interfaces with complex boundaries in multi-material numerical simulations.
However, the performance of computing the signed distance field is
hindered by the complexity and size of the input. Recent trends in High-
Performance Computing architecture consist of multi-core CPUs and
accelerators that collectively expose tens to thousands of cores to the
application. Harnessing this massive parallelism for computing the signed
distance field presents significant challenges. Chief among them is the
design and implementation of a performance portable solution that can work
across architectures. Addressing these challenges to accelerate signed
distance queries is the primary contribution of this work. Specifically, in this
work we employ the RAJA programming model, which provides a loop-
level abstraction that decouples the loop-body from the parallel execution
and insulates application developers from non-portable compiler and
platform-specific directives.

Overview	
	

Performance	Results	
•  Strong	scaling	yields	a	9.7x	speedup	with	16	threads	and	12x	ager	load	balancing	
•  Load	balancing	increased	the	speedup	by	23.7%	and	had	nearly	linear	weak	scaling	efficiency	
	

Strong	Scaling	

Speedup	on	275k	points	 ExecuPon	Time	on	275k	points	 ExecuPon	between	
threads	and	query	points		

Efficiency	between	
threads	and	query	points	

Weak	Scaling	

Conclusion	
•  We	described	a	performance	portable	parallelizaPon	

strategy	for	threading	signed	distance	queries	

•  Our	preliminary	performance	evaluaPon	indicated	
significant	load	imbalances	among	threads	

•  With	the	RAJA	IndexSet	abstracPon,	we		address	the	
load	imbalances	and	improve	the	overall	performance	
of	our	algorithm	

We	used	RAJA’s	loop	abstracPon	model	to	minimize	the	changes	necessary	to	run	our	loops	using	different	execuPon	policies.	

SequenPal	ExecuPon	

auto signed_distance = [=] (int index) {
quest::Point<double,3> pt;
umesh->getMeshNode(inode, pt.data());
phi_store[inode] = storeSD->computeDistance(pt);
double dist = phi_store[index];
phi_union[inode] = std::min(dist, phi_wing[inode]);

}

RAJA::forall<RAJA::seq_exec>(0, nnodes, signed_distance);

RAJA::forall<RAJA::omp_parallel_for_exec>(0, nnodes, signed_distance);

RAJA::IndexSet idxSet;
for(int y = 0; y <= params.ny; ++y) {

for(int z = 0; z <= params.nz; z++) {
int start = (params.nx + 1) * (y + z * (params.ny + 1));
idxSet.push_back(RAJA::RangeSegment(start, start + params.nx + 1));

}
}
typedef RAJA::IndexSet::ExecPolicy<RAJA::omp_parallel_for_segit,RAJA::simd_exec> exec_pol;
RAJA::forall<exec_pol> (idxSet, signed_distance);

1

Balanced	OpenMP	ExecuPon	using	IndexSet	

auto signed_distance = [=] (int index) {
quest::Point<double,3> pt;
umesh->getMeshNode(inode, pt.data());
phi_store[inode] = storeSD->computeDistance(pt);
double dist = phi_store[index];
phi_union[inode] = std::min(dist, phi_wing[inode]);

}

RAJA::forall<RAJA::seq_exec>(0, nnodes, signed_distance);

RAJA::forall<RAJA::omp_parallel_for_exec>(0, nnodes, signed_distance);

RAJA::IndexSet idxSet;
for(int y = 0; y <= params.ny; ++y) {

for(int z = 0; z <= params.nz; z++) {
int start = (params.nx + 1) * (y + z * (params.ny + 1));
idxSet.push_back(RAJA::RangeSegment(start, start + params.nx + 1));

}
}
typedef RAJA::IndexSet::ExecPolicy<RAJA::omp_parallel_for_segit,RAJA::simd_exec> exec_pol;
RAJA::forall<exec_pol> (idxSet, signed_distance);

1

OpenMP	ExecuPon	

auto signed_distance = [=] (int index) {
quest::Point<double,3> pt;
umesh->getMeshNode(inode, pt.data());
phi_store[inode] = storeSD->computeDistance(pt);
double dist = phi_store[index];
phi_union[inode] = std::min(dist, phi_wing[inode]);

}

RAJA::forall<RAJA::seq_exec>(0, nnodes, signed_distance);

RAJA::forall<RAJA::omp_parallel_for_exec>(0, nnodes, signed_distance);

RAJA::IndexSet idxSet;
for(int y = 0; y <= params.ny; ++y) {

for(int z = 0; z <= params.nz; z++) {
int start = (params.nx + 1) * (y + z * (params.ny + 1));
idxSet.push_back(RAJA::RangeSegment(start, start + params.nx + 1));

}
}
typedef RAJA::IndexSet::ExecPolicy<RAJA::omp_parallel_for_segit,RAJA::simd_exec> exec_pol;
RAJA::forall<exec_pol> (idxSet, signed_distance);

1

Loop	Kernel:	
auto signed_distance = [=] (int index) {

quest::Point<double,3> pt;

umesh->getMeshNode(index, pt.data());

phi_store[index] =

sd->computeDistance(pt);

double dist = phi_store[index];

phi_union[index] =

std::min(dist, phi_wing[index]);

}

1

