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ABSTRACT
We consider the problem of efficient computing and simpli-
fying Morse complexes on a Triangulated Irregular Network
(TIN) based on discrete Morse theory. We develop a com-
pact encoding for the discrete Morse gradient field, defined
by the terrain elevation, by attaching it to the triangles of
the TIN. This encoding is suitable to be combined with any
TIN data structure storing just its vertices and triangles. We
show how to compute such gradient field from the elevation
values given at the TIN vertices, and how to simplify it effec-
tively in order to reduce the number of critical elements. We
demonstrate the effectiveness and scalability of our approach
over large terrains by developing algorithms for extracting
the cells of the Morse complexes as well as the graph joining
the critical elements from the discrete gradient field. We
compare implementations of our approach on a widely-used
and compact adjacency-based topological data structure for
a TIN and on a compact spatio-topological data structure
that we have recently developed, the PR-star quadtree.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks; I.3.5
[Computer Graphics]: Computational Geometry and Ob-
ject Modeling; I.3.6 [Computer Graphics]: Methodology
and Techniques—Graphics data structures and data types

1. INTRODUCTION
Morphological methods for terrain analysis are rooted in
Morse theory [23], which is the basis for defining decomposi-
tions of the domain of a scalar field into regions of influence
of its critical points, called Morse decompositions. However,
Morse theory applies to smooth functions, while, in practical
applications, we deal with terrains regularly or irregularly
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sampled at discrete locations within a domain. Thus, recent
research has focused on combinatorial topological methods,
which avoid computing derivatives and, thus, are beneficial
in the presence of noisy data. Forman’s discrete Morse the-
ory [16] extends Morse theory to simplicial complexes (tri-
angle meshes in the 2D case). In addition to its theoretical
contributions, this discrete formulation has practical applica-
tions in the development of robust discrete algorithms, which
overcome the intrinsic limitations of previous algorithms for
Morse decompositions.

Our work concentrates on computing discrete Morse decom-
positions on Triangulated Irregular Networks (TINs) dis-
cretizing terrains. To this aim, we compute a discrete For-
man gradient compatible with the elevation values of the
vertices of the TIN. The discrete gradient field is defined not
only at the vertices, but also at the edges and triangles of
the triangle mesh. However, a data structure for the mesh
encoding all such entities would be too verbose. To over-
come this problem, we introduce a compact encoding for
the Forman gradient which is only attached to the triangles,
and is therefore suitable to be combined with any compact
data structure for triangle meshes encoding only vertices and
triangles, like the Indexed data structure with Adjacencies
(IA) [25]. Moreover, we propose an implementation for the
PR-star quadtree [29], which derives the local connectivity of
the mesh through a spatial index on the mesh geometry, and
we show the advantages of the PR-star quad-tree in terms of
storage and of efficiency in computing the Forman gradient
and the associated discrete Morse decompositions based on
a TIN.

A relevant issue when describing a terrain of large-size through
a morphological representation, like a Morse decomposition,
is the large size of the resulting terrain segmentation, due
to the presence of noise and to uninteresting terrain fea-
tures. A central contribution of our work is an algorithm
for simplifying a morphological representation of large-size
terrains based on the cancellation operator, which removes
two critical points connected by an integral-line [22]. More-
over, simplification allows the extraction of morphological
features, such as the cells of the Morse decomposition, the
critical net connecting the critical points of the terrain, at



different levels of topological accuracy.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss some background notions on smooth and
discrete Morse theories. In Section 3, we discuss related work
on computing Morse decompositions and on spatial indexes.
In Section 4, we describe the compact Forman gradient en-
coding and its implementation on the IA and PR-star data
structures, while, in Section 5, we provide a constructive def-
inition of Morse complexes in the discrete case. In Section 6,
we describe the simplification algorithm, and its implemen-
tation on the IA and PR-star data structures, while, in Sec-
tion 7, we present an experimental evaluation of the results.
Finally, in Section 8, we draw some concluding remarks and
discuss current and future developments.

2. BACKGROUND NOTIONS
Morse theory [22, 23] studies the relationships between the
topology of a shape and the critical points of a scalar function
defined on it. We consider a C2-differentiable real-valued
function f defined over a domain M ⊆ R2. A point p ∈ R2

is a critical point of f if and only if the gradient 5f of f
vanishes on p, i.e., 5f(p) = 0. We consider the Hessian
matrix of f , denoted as Hess(f), which is the matrix of
the second-order partial derivatives of function f . If the
determinant of Hessp(f) in p is not null, then p is a non-
degenerate critical point. The number of negative eigenvalues
of Hessp(f) is called the index of critical point p. In the 2D
case, the critical points are minima, maxima and saddles,
and they are critical points of index 0, 2 and 1, respectively.

We define a scalar field as a pair M = (M,f) where M is a
domain in R2 and f is a C2-differentiable real-valued func-
tion defined on M (the elevation in case of terrains), which
associates a real value with each point of M . Function f
is said to be a Morse function if and only if all its critical
points are not degenerate. An integral line of a function
f is a maximal path everywhere tangent to the gradient
of f . Integral lines that converge to a critical point p of
index i form the so-called called the descending i-manifold
of p. Integral lines that originate from a critical point p
of index i form the so-called ascending (2 − i)-manifold of
p. The ascending/descending manifolds are pairwise disjoint
and decompose the domain of M into open cells. The col-
lection of all the descending(ascending) manifolds forms the
descending(ascending) Morse complex.

Discrete Morse theory [16] is a combinatorial counterpart of
Morse theory: it defines a so-called discrete Morse function
on all the cells of a cell complex. For the sake of simplicity,
we will briefly review this theory for triangle meshes. A
triangle mesh Σ is composed of triangles, edges and vertices,
that we call 2-, 1- and 0-simplexes, respectively. Recall
that a k-dimensional simplex or, k-simplex σ, spanned by a
geometrically independent set S = {v0, v1, ..., vk} in Rn. is
defined as the convex hull of the points of S.

A function F : Σ → R, defined on Σ, is a discrete Morse
function (also called a Forman function) if and only if for ev-
ery i-simplex σ ∈ Σ, all the (i−1)-simplexes on the boundary
of σ have a lower function value than σ, and all the (i+ 1)-
simplexes bounded by σ have a higher function value than σ,
with at most one exception. If there is such an exception, it

Figure 1: Example of a Forman gradient on a trian-
gulated terrain. Red dots indicate critical triangles
(maxima), green dots indicate critical edges (sad-
dles) and blue dots critical vertices (minima).

defines a pairing of cells, called a gradient pair. Otherwise, σ
is a critical simplex of index p. A non-critical simplex σ can
be paired either with a non-critical simplex bounded by σ
or with one of its faces. The pair can be viewed as an arrow
formed by a head (i-simplex) and a tail ((i− 1)-simplex). A
simplex that is not a head or a tail of any arrow is a critical
simplex.

A V -path is a sequence of simplex pairs [σ0, τ0, ..., σi, τi, ..., σq,
τq] such that σi and σi+1 are on the boundary of τi and
(σi, τi) are paired simplexes, where i = 0, ..., q. The collec-
tion of all paired and critical simplexes of Σ forms a discrete
Morse gradient (also called a Forman gradient) V if there
are no closed V -paths in V , i.e., if all the V -paths are acyclic.
In Figure 1, we show an example of discrete Morse gradient
on a simplified terrain dataset. In the combinatorial setup
of discrete Morse theory, V -paths correspond to the integral
lines of the discrete Morse function F defined on Σ. We
will call separatrix Vj-path any V-path of the following form:
[τ, σ0, τ0, ..., σi, τi, ..., σq, τqσ], where τ and σ are two criti-
cal simplexes of dimension j and (j − 1), respectively. In a
triangle mesh Σ, we have separatrix V1-paths connecting a
critical edge (corresponding to a saddle) to a critical vertex
(corresponding to a minimum), and separatrix V2-paths con-
necting a critical triangle (corresponding to a maximum) to
a critical vertex (corresponding to a saddle).

3. RELATED WORK
There have been several approaches to extend the results of
Morse theory and to represent Morse and Morse-Smale (MS)
complexes in the discrete case. Besides discrete Morse the-
ory [16], reviewed in Section 2, another approach, discussed
in [12,13], is based on Banchoff’s extension of Morse theory
to piecewise-linear manifolds and functions [1]. Surveys of
algorithms for computing Morse and Morse-Smale complexes
in 2D and 3D either based on the piece-wise linear Morse
theory or on a watershed approach can be found in [2, 7].

Recently, a lot of attention has been devoted to algorithms
rooted in discrete Morse theory [16], which has led to the for-
mulation of robust discrete algorithms [18,26,28] for comput-
ing Morse and MS complexes, overcoming the intrinsic limi-
tations of previous techniques. Algorithms based on discrete
Morse theory have been developed for regular grids [18,26]
or for tetrahedral meshes [30]. A parallel algorithm for com-



puting 2D Morse-Smale complexes for large 2D structured
meshes is presented in [28]. Algorithms that produce more
accurate geometry and, thus, the correct connectivity for the
MS complex are discussed in [19].

A variety of hierarchical spatial indexes have been proposed
for points, polygonal maps, 3D objects and triangle meshes [27].
In [9], a family of spatial indexes for tetrahedral meshes,
called tetrahedral trees, has been introduced which generalize
similar data structures for maps and triangle meshes to 3D.
Such indexes contain the geometrical entities only in their
leaf nodes and, thus, the shape of the tree is independent of
the order in which the entities are inserted.

A fundamentally and conceptually different data structure
for tetrahedral meshes, called the PR-star octree [29], uses
the spatial embedding of the mesh to index its topological
connectivity (see Section 4.1). This data structure has been
used to extract morphological features from terrain and vol-
ume datasets in [8, 30] using a streaming implementation
of Robins et al.’s algorithm for Forman gradient computa-
tion [26]. Other approaches propose localized computations
by using a spatial index to reduce memory requirements for
out-of-core [5], or memory intensive mesh processing [10],
or by developing a reduced data structure for a simplicial
mesh [3]. Cignoni et al. [5] introduce an external memory
spatial data structure to support compact out-of-core pro-
cessing of large triangle meshes.

4. ENCODING A TIN AND A FORMAN
GRADIENT

When a terrain is represented as a Regular Square Grid
(RSG), a Forman gradient V can be implicitly encoded on
such representation as a bit vector based on the same index-
ing as the one used for the cells of the grid [17]. When using
simplicial meshes, the large majority of the algorithms for
computing the discrete Morse complexes, also in the context
of homology and persistent homology computation, encode
the simplicial mesh as an Incidence Graph (IG) [11]. A more
compact version of the IG, specific for simplicial meshes, is
the Simplified Incidence Graph (SIG) [15] which, in the case
of a triangle mesh Σ, encodes all the simplexes of Σ and the
boundary relations between a triangle and its bounding edges
and an edge and its extreme vertices plus, for each edge, the
indexes of its two incident triangles and, for each vertex, one
edge incident in such vertex.

Data structures for simplicial meshes, which encode only the
vertices and the maximal simplexes, like the Indexed data
structure with Adjacencies (IA) [24,25], have been shown to
be much more compact [4,14]. For a triangle mesh Σ, the IA
data structure encodes only the vertices and the triangles,
and, for each triangle σ, the indexes of its three vertices
and of its three adjacent triangles and, for each vertex v,
its coordinates plus the index of one triangle incident in v.
As shown in [14], the IA data structure occupies 1.8 more
space on average than an IG for a triangle mesh, and 1.4
more space than a SIG. A more compact alternative to
the IA data structure is provided by the PR-star quadtree,
which still encodes only vertices and triangles, but uses an
entirely different approach to handle mesh connectivity and
topological relations.

Figure 2: A leaf node in a PR-star quadtree (with
bucket threshold kv = 4) encodes a set of vertices
and all triangles incident in such vertices. In brown
the triangles that are completely indexed by the leaf
(blue rectangle). In yellow, those that are incident
into a vertex contained inside the leaf, and in grey
those that geometrically intersect the leaf but are
not incident into its internal vertices (these latter
are not indexed by the leaf).

4.1 The PR-star quadtree
The PR-star quadtree, a 2D version of the PR-star octree in-
troduced in [29], uses the spatial index induced by a quadtree
to efficiently generate local application-dependent topolog-
ical data structures at runtime. The PR-star quadtree is
based on the Point Region quadtree (PR quadtree), a spatial
index for point data [27]. The domain decomposition defined
by a PR-quadtree is controlled by a single parameter, that
we denote as kv, which determines the maximum number
of points indexed by a leaf node. The insertion of a new
point into a full leaf in the PR-quadtree causes the leaf to
split and its indexed points to be redistributed among its
four children. Thus, the domain decomposition induced by
a PR-quadtree is independent of the insertion order of its
points.

The PR-star quadtree for a triangle mesh Σ encodes the
vertices and the triangles of Σ and consists of: (a) an array
P of vertices, encoding the geometry of Σ; (b) an array
T of indexed triangles, where each element is encoded in
terms of the indices of its three vertices within P ; and (c) an
augmented PR quadtree N , whose leaf nodes index a subset
of vertices from P , and all the triangles in T incident in these
vertices. An example of PR-star quadtree is shown in Figure
2.

Here, use a more compact representation for the leaves of the
PR-star quadtree compared with the one in [29] by exploit-
ing the spatial locality provided by the quadtree through
a reindexing of arrays P and T . Besides the hierarchical
information associated with the quadtree (i.e., the pointers
from a node to its parent and to its children), each leaf node
nL encodes: the range of indices vstart and vend in P of the
vertices contained in nL; the range of indices tstart and tend
in T of the triangles that are completely contained in nL;
and a pointer to the list of the remaining triangles from T
incident in these vertices, i.e. each such triangle has at least
one vertex inside and one outside the domain of nL.



Figure 3: Set of arrows inside per triangle σ. Blue
arrows indicate pairings between simplexes belong-
ing to the boundary of σ (and possibly σ itself). Red
arrows indicate pairings between the edges of σ and
its adjacent triangles.

The IA and the PR-star data structures share the same en-
coding for the triangle-vertex connectivity of the mesh, i.e.,
the boundary relation between each triangle and its vertices,
which requires 3|T |+3|P | ≈ 9|P | items, since |T | ≈ 2|P |, as a
consequence of Euler formula. The IA data structure requires
additional 3|T |+ |P | ≈ 7|P | items for the other topological
relation encoded, that we call its topological overhead. Con-
versely, each node of a PR-star quadtree requires 9|N | items
for the spatial indexing, and χ|T | for storing the triangle
lists, where χ denotes the average number of quadtree nodes
in which a triangle appears (i.e., 1 ≤ χ ≤ 3). This gives
a total topological overhead for the PR-star data structure
of χ|T |+ 9|N |. Based on our experiments, we approximate
χ ≈ 1.5, and the number of quadtree nodes as |N | ≈ |P |/kv.
Thus, the topological overhead for the PR-star is equal to
χ|T |+ 9|N | ≈ 1.5|T |+ (9/kv)|P | ≈ 4|P |.

4.2 An Encoding for the Forman Gradient
We describe here an encoding for the Forman gradient V
associated with a triangle mesh Σ, in which information
regarding the Forman gradient V are attached only to the
triangles. The encoding associates with each triangle σ in Σ
a subset of the vector pairs involving its faces, and thus, it is
stored globally for both the IA and PR-star data structures.
Specifically, σ encodes all the vectors pairs, namely (τ1, σ

′),
corresponding to an arrow from an edge τ1 to a triangle
σ′ (red arrows in Figure 3) and (τ0, τ1), corresponding to
an arrow from a vertex τ0 to an edge τ1 (blue arrows in
Figure 3).

In a triangle mesh, a triangle has
(

3
i+1

)
faces of dimension i,

and each face has (i+ 1) simplexes of dimension (i− 1) on
its boundary. Thus, there are

2∑
i=1

(
3

i+ 1

)
· (i+ 1) = 3 · 2 + 1 · 3 = 9

possible gradient pairs in the restriction of V to σ. Adding
the three additional gradient pairs from an edge of σ to an
adjacent triangle gives a total of 12 possible gradient pair-
ings. Since each such pairing within a local frame encodes a
single bit of information (i.e. the presence or absence of that
particular pairing), each local frame can be encoded using 12
bit flags per triangle. This bit flag representation simplifies
testing for the presence of vector pairings as well as up-
dates to the discrete vector field. The restrictions imposed
by discrete vector fields imply that there are significantly

Figure 4: Example of the descending 2-manifold
computed by starting from the critical triangle (in
red).

fewer valid local frame configurations than the possibilities
provided by the bit flag representation. In 2D, we have 12
arrows for a total of 212 = 4, 096 cases. However, since we
are considering a Forman gradient, we have only 97 valid
cases for a triangle. Thus, we can encode all the possible
configurations by using only one byte per triangle. This has
been generalized to 3D [30] and higher dimensions [21].

We compute the discrete Morse gradient starting from the
original mesh Σ and the elevation values given at its vertices.
We have developed an implementation of the algorithm by
Robins et al. [26], originally defined for cubical cell complexes
and applied for persistent homology computation of 2D and
3D images, both for the IA and the PR-star data structures
[8]. The algorithm outputs a list C of the critical simplices
as well as the discrete gradient field encoded as a collection
of arrows from a vertex to its paired edge, and from an
edge to its paired triangle. The gradient is generated via
homotopic expansions of the lower star of each vertex of the
input mesh. Recall that the lower star of a vertex v consists
of the simplices σ (edges and triangles) incident in v such
that max

p∈σ
f(p) = f(v). Since pairings occur only between

simplices in the same lower star, each lower star can be
treated independently.

5. EXTRACTING THE DISCRETE MORSE
COMPLEXES

In this section, we provide a constructive definition of the
cells of the discrete Morse complexes (i.e. the descending and
ascending manifolds in the discrete case), and the critical
net in terms of the triangles and vertices of the TIN. In Sec-
tion 7, we briefly discuss how to compute such morphological
features on the IA and the PR-star data structures.

A descending 2-manifold (see Figure 4) for a maximum pmax
is a collection of triangles of Σ obtained by considering the
critical triangle τ corresponding to pmax and following the
(edge,triangle) arrows in V starting from the boundary edge
σ of τ such that (σ, τ) is in V . Dually, an ascending 2-
manifold (see Figure 5) for a minimum pmin is a collection
of vertices of Σ obtained by starting from the critical vertex
v and following the (vertex,edge) arrows in V .

A descending 1-manifold for a saddle psad is a collection
of edges of Σ obtained by considering the critical edge e
corresponding to psad and following the (vertex,edge) arrows
in V starting from the vertex v on the boundary of e such that
pair (v, e) is in V . Similarly, an ascending 1-manifold is a
collection of edges of Σ and obtained by starting from an edge
e corresponding to a saddle psadand following (edge,triangle)



Figure 5: Example of the ascending 2-manifold com-
puted from the critical vertex (in light blue).

pairs of V . Note that each edge of Σ can be indexed either
through its two extreme vertices or through its two incident
triangles.

For extracting the descending 2-manifolds and the ascend-
ing 1-manifolds we need, for each edge e, the two triangles
sharing e (Edge-Triangle (ET) relation), while for extracting
the ascending 2-manifolds and the descending 1-manifold we
need, for each vertex v, if exists, a triangle that contains
the edge paired with v (partial Vertex-Triangle (VT*) re-
lation). In the IA data structure, the partial VT relation
is stored and the ET relation can be efficiently derived by
the Triangle-Triangle adjacency relation stored. In the PR-
star quadtree, the two topological relations are extracted
when expanding each leaf node. The strategy in following
the V -paths is different in the two data structures, since, in
the PR-star quadtree, following the V -path can lead to a
leaf that has not been visited yet (we refer to such paths as
dangling paths). In this case, we stop the V -path following
process and the information needed to complete the path
are saved in an auxiliary data structure.

The union of the ascending and descending 1-manifolds forms
critical net. The combinatorial structure of the critical net,
the Morse Incidence Graph (MIG) [21], is a graph in which
the nodes correspond to the critical points (simplices in Σ)
and the arcs to the adjacencies of these points on the critical
net. We observe that this is also the incidence graph repre-
sentation of either Morse complexes, and thus it is computed
by extracting all the manifolds in either one of the two Morse
complexes.

6. SIMPLIFYING A FORMAN GRADIENT
A fundamental issue in terrain analysis is the complexity of
available datasets, due to noise and the presence of uninter-
esting terrain features. In Morse theory an operator, called
cancellation, has been defined, which removes critical points
in pairs, thus simplifying the scalar field [22]. If M = (M, f)
is a terrain, where f is a Morse function, a cancellation
applied to two critical points p and q transforms f into a
new Morse function g by removing p and q, and modifying
the gradient field of f around the integral lines of p and q.
In terms of Morse complexes, a cancellation produces the
removal of two Morse cells, both in the ascending and de-
scending Morse complexes, as well as a local modification of
the incidence relations between the remaining Morse cells. If
p and q are critical points of index i+ 1 and i, respectively,
i-cancellation(p, q) can be applied if and only if there is a
unique integral line connecting p and q. As an effect of i-
cancellation(p, q), p and q are removed and the integral lines
originated/converging into them are modified. The set of

integral lines converging at p or q before the cancellation are
transformed into a set of integral lines converging to critical
points of index j > i, that were the destination of integral
lines starting at p before the cancellation; the set of integral
lines that originated at q or p before the cancellation are
transformed into a set of integral lines originating at critical
points of index k < i+1 that were the origin of integral lines
ending at q before the cancellation.

Working with a Forman gradient, there exists a discrete
counterpart of the i-cancellation removing two critical sim-
plexes in pairs [16]. Let us consider a Forman gradient V
on mesh Σ and let p and q be two critical simplexes in V
such that there exists exactly one gradient path from p to
q. Then, there is another Forman gradient V ′ on Σ with
the same critical simplexes with the exception of q and p.
Moreover, V ′ coincides with V except along the unique gra-
dient path from the boundary of p to q. V ′ is obtained
from V by removing the critical (i − 1)-simplex q and i-
simplex p and by reversing the arrows of the separatrix
Vi-path p, (σ0, τ1), (σ1, τ2), ..., (σi, τi + 1), ..., (σn − 1, τn), q
connecting them. This produces the new V -path: (q, τn),-
(σn, τn−1), ..., (σi, τi−1), ..., (σ0, p).

In Figure 6(a), we show an example of 1-cancellation be-
tween a maximum p and a saddle q. Cancellation works
on the separatrix V-path, formed by triangles and edges,
between the two critical simplexes (red arrows). After the 1-
cancellation, p and q are removed from the Forman gradient
and the arrows forming such V-path are reversed. Notice
that, after the 1-cancellation, new V -paths are formed from
the composition of the reversed path (red arrows) and the
V -paths starting from the deleted maximum p (green ar-
rows). Similarly, a 0-cancellation between a saddle and a
minimum, illustrated in Figure 6(b), removes a critical edge
q and a critical vertex p from the Forman gradient, which
is performed by reversing the arrows on the V-path, formed
by edges and vertices, between them (red arrows).

6.1 Simplification algorithm
We have defined a simplification algorithm, based on i −
cancellation, for simplifying the topology of a TIN, which
is completely independent of the underlying data structure.
A persistence value is associated with an i− cancellation by
considering the maximum elevation values of the two critical
simplexes p and q deleted by the operator. The persistence
of a pair of critical simplexes measures the importance of
the pair. The objective of the simplification algorithm is
to reduce the complexity of a scalar function by removing
critical points which are due to the presence of noise or
which are not relevant for the need of a specific application.
Simplification is also applied when the size of the original
Morse complex is too large for the available computation
resources.

Algorithm 6.1 provides the pseudo-code description of the
simplification algorithm. The stopping condition is deter-
mined by a persistence threshold θ, i.e., all the simplifications
performed have a persistence value lower than θ. Function
SimplifyForman requires three input parameters: the thresh-
old θ, a Forman gradient V and the MIG G computed on Σ
and on V .



(a)

(b)

Figure 6: 1-cancellation (above) and 0-cancellation
(below) removing two critical simplexes p and q from
a Forman gradient.

In the initialization step, the arcs having a persistence value
below threshold θ are inserted in a priority queue Q (rows 3-4-
5), sorted according to their persistence. Each simplification
s in Q, which removes two critical simplexes p and q, is
considered feasible if there exists a single V -path between p
and q, i.e., the two corresponding nodes are in G and they
are connected by a single arc (function isFeasibleSimpl). If
the simplification is feasible then:

- we update the gradient vector, by removing p and q
and by swapping the arrows in the V-path between
them (row 9);

- we update the MIG G by removing the two correspond-
ing nodes from G and by creating for each saddle con-
nected with p, different from q, a new arc connecting
it with the other minimum/maximum connected with
q and different from p (row 10).

Those new arcs are also inserted into Q if their persistence
value is below θ.

6.2 Forman gradient simplification on the IA
data structure

The persistence-based simplification algorithm SimplifyFor-
man has been implemented in the IA data structure. The
parts of the algorithms, which depend on the data structure,
are the computation of the input MIG from mesh Σ and
Forman gradient V , and the update of the Forman gradient
when performing an i-cancellation. The MIG is computed
by extracting the descending and ascending 1-manifolds. In
the IA implementation we create a node for each critical sim-
plex in V . Then, for each critical edge (saddle) s, we expand
the descending and ascending 1-manifolds. For expanding
the ascending 1-manifolds we follow, from each saddle s, the
separatrix V2-paths starting from the triangles in bounded

Algorithm 1 SimplifyForman(θ,V,G)

Require: θ is a float value indicating the persistence thresh-
old;

Require: G = (N,A) is the MIG describing the critical
simplexes and their connections;

Require: V is the original Forman gradient;
1: Q = ∅ // an empty priority queue

2: // All the arcs are pushed into the priority queue based
on their persistence value;

3: for all arcs a ∈ A do
4: if a.persistence() < θ then
5: Q.push(a);
6: while Q.isNotEmpty() do
7: s ← Q.pop() // The next simplification s is popped

from the queue;
8: if isFeasibleSimpl(s) then
9: V.update(s); // swaps the arrows in the gradient

10: anew = G.update(s);

// anew are the new arcs created by the simplification
11: for all arcs a ∈ anew do
12: if a.persistence() < θ then
13: Q.push(a);
14: else
15: break;

by s (Edge-Triangle topological relation). For each critical
triangle t reached by following the separatrix V2-paths, a
new arc in G is created connecting s to t. Similarly, to ex-
pand the descending 1-manifolds, we follow the separatrix
V1-paths starting from the boundary vertices of s (Vertex-
Edge topological relation). For each critical vertex p reached
by following the separatrix V1-paths, a new arc in G is cre-
ated connecting s to p. The update of the Forman gradient
at each simplification step is performed by using the same
topological relations.

6.3 Forman gradient simplification on the
PR-star quadtree

Here, we describe the implementation of the simplification
algorithm specific for the PR-star quadtree. The strategy
described is entirely different since it exploits the modu-
lar structure of the PR-star quadtree. The basic paradigm
for performing operations on a mesh encoded as a PR-star
quadtree is to locally process the mesh in a streaming man-
ner by iterating through the leaf nodes. For each leaf node,
a local application-dependent data structure, which we refer
to as an expanded leaf node, is generated and used to pro-
cess the local geometry. After processing a leaf node, we
discard this local structure and move to the next leaf node.
For efficiency, we use an auxiliary cache based on the least-
recent-used replacement policy that maintains a subset of
expanded leaf nodes.

The whole simplification process is executed in those leaf
nodes that contain at least one saddle. The following simpli-
fication steps are performed:

1. compute an expanded leaf node representation by ex-
tracting all the topological relations required;

2. compute a local MIG;
3. simplify the global gradient V and the MIG G by using



the SimplifyForman algorithm;
4. save the expanded leaf node representation in cache.

Recall that, when indexing a mesh Σ in a PR-star quadtree,
we encode only the relation between each triangle of Σ and
its bounding vertices. At run-time we compute an expanded
leaf node data structure for the portion of Σ in a leaf node
nL, that we denote ΣL. The data structure encodes also the
edges of the mesh, the two triangles sharing a given edge
(Edge-Triangle relation), and, for each indexed vertex v, a
triangle that contains the edge paired with vertex v (partial
Vertex-Triangle relation). To reduce the overall computa-
tional complexity, these relations are also cached.

Thanks to the intrinsic modularity of the PR-star tree, we
have defined two different execution strategies (see step 2),
which compute the MIG as a completely local data struc-
ture, or as a global data structure. In the local strategy, we
construct a coherent local MIG for each leaf nod nL: for
each saddle inside nL, we traverse the global gradient V to
find all the minima and maxima connected to it. Each sad-
dle is visited exactly once, since it is indexed in a single leaf
node, i.e., the one that indexes the maximum vertex of the
saddle. On the other hand, even if the local MIG is coherent,
with respect to the indexed saddles, the minima and maxima
outside node nL are not considered

”
since we do not visit all

the V -paths going out of nL. In the global approach, there
is an execution pattern similar to the one implemented in
the IA data structure, where we first compute a global MIG
and then we execute the simplification procedure. Thus, in
the global strategy, we skip step 2.

In step 3 we use persistence-based simplification algorithm
SimplifyForman. The main difference with respect to the
IA implementation is that the priority queue is local to the
leaf node, i.e., the queue contains only those arcs that have
an indexed saddle into the current leaf node. This leads
to a different simplification order with respect to the IA
implementation, which has a global queue.

During the local MIG construction and the gradient simpli-
fication, we could have a relatively intense navigation of the
index, that can cause a series of cache lookup, leading to a
cache-hit or a cache-miss. If we have a cache miss we have
to expand the leaf node in order to continue the current op-
eration, and then add the expanded leaf node representation
to the cache.

7. EXPERIMENTAL RESULTS
We evaluate here the performance of the discrete gradient
encoding, of the morphological feature extraction algorithms
and of the gradient simplification algorithm. We present
experiments on three triangle meshes, representing terrains,
whose sizes vary from 4 to 19.5 million triangles. The hard-
ware configuration used is an Intel i7 3930K CPU at 3.20Ghz
with 64 GB of RAM.

7.1 Storage costs and gradient computation
We compare here the storage costs of the IA and PR-star
data structures. We call the base mesh the information on
the mesh encoded by both data structures, consisting of the
vertex coordinates and the triangle-vertex connectivity, and
topological overhead the remaining storage cost for each of

the two structures. Compared with the storage cost of the
base mesh, the topological overhead of the IA data structure
is about 20% less, while the topological overhead of the PR-
star tree is between 85% and 90% less. In terms of overall
storage cost, which includes the cost of the base mesh, the
maximal topological overhead, and the gradient encoding,
the PR-star requires from 20% to 35% less memory than the
IA data structure.

Our implementations of the gradient construction algorithm
on the IA and PR-star data structures share the same en-
coding, but the PR-star quadtree can efficiently reconstruct
the local connectivity for the entire sub-mesh indexed by a
leaf node and, thus, it computes the gradient field requiring
from 10% to 15% less time than the IA data structure (see
Table 1).

7.2 Extraction of Morse complexes
Both data structures require a small amount of additional
memory to extract Morse features. The IA requires a global
queue to perform the graph traversal of the gradient field,
while the PR-star quadtree uses a cache of quadtree nodes
with expanded connectivity information as well as a list of
dangling paths for each visited leaf node, plus a small local
queue for the local graph traversal. As shown in Table 1, the
additional storage in the IA data structure implementation is
negligible on the descending and ascending extractions, while
it is between 2% and 9% higher, with respect to the mesh and
gradient encoding, when extracting the MIG. Conversely,
the additional storage required by the the PR-star quadtree
implementation is slightly higher, since it is between 2% and
10% more.

Generally speaking, the IA data structure outperforms the
PR-star quadtree in extracting specific i-manifolds. For
the descending 2-manifolds, the IA is from 2.5 to 4 times
faster, and for the ascending 2-manifolds, it is from 8 to 12
times faster then the PR-star. In extracting descending 1-
manifolds the PR-star requires from 40% to 80% more time
with respect to IA data structure. Conversely, the PR-star
quadtree is faster in extracting the MIG, for which it re-
quires from 10% to 20% less time than the IA data structure.
The rationale for this is that, during the extraction of a
specific i-manifold, only a specific topological relation is in-
volved and this that can be extracted from the IA structure
more efficiently. On the contrary, when different topological
relations are involved, such as during the MIG extraction
(or the Forman gradient computation), the PR-star tree ap-
proach is more efficient since it amortizes the time required
in computing the auxiliary topological relations in the leaf
nodes.

7.3 Topological simplification
Since topological simplification is an operation used to re-
move the noise from a scalar field, we have selected three
levels of noise removal, choosing three different persistence
thresholds (for a lower, medium and larger noise removal).
Table 2 shows the results of these experiments. Since the
algorithms developed for the IA data structure and for the
PR-star quadtree use a different simplification order (a global
versus a local priority queue), we obtain different simplifica-
tion sequences for the same value of the persistence threshold.
The order in the simplification influences the number of sim-



Table 1: Timings (in seconds) and storage (expressed in MBs) for the implementations based on the PR-star
tree and the IA. Mesh shows the storage cost for the data structure encoding the mesh. Connect. shows the
topological connectivity overhead of the structures, which is compared respect to the base mesh requirements.
Max total shows the maximum storage requirements, with which we compare PR-star and IA.

Data |T | kv

Storage Timings

Mesh
Connect. Max total Gradient Descend. 2 Descend. 1 Ascend. 2 Ascend. 1 MIG

tot % tot % tot % tot % tot % tot % tot % tot %

maui 4.0M
IA

69
57 83 129 – 26.0 – 4.74 – 1.62 – 1.86 – 9.42 – 11.0 –

200 11 16 87 68 21.5 83 17.2 362 2.50 154 23.5 1264 8.21 87 10.0 91
400 7 10 79 79 22.2 85 17.9 377 2.90 179 19.1 1029 8.41 89 10.3 93

baia 8.3M
IA

143
119 83 264 – 53.1 – 9.90 – 3.27 – 3.81 – 8.16 – 11.4 –

100 22 16 172 65 44.4 84 32.7 331 4.65 142 46.7 1225 7.15 88 9.07 79
300 14 9 184 70 46.0 87 40.2 406 5.34 163 38.9 1020 8.39 103 10.7 94

puget 19.5M
IA

334
278 83 642 – 128 – 24.0 – 8.82 – 9.70 – 31.5 – 40.3 –

400 35 10 413 64 111 87 69.6 291 13.5 153 85.3 879 24.7 78 31.0 77
800 29 9 430 67 113 88 65.5 273 14.4 163 76.2 785 26.6 84 31.2 77

Table 2: Simplification timings (expressed in seconds), storage (expressed in MBs) and ratio for the im-
plementations based on the PR-star tree and the IA. The storage is compared respect to the base mesh
requirements shown in Table 1. |S| colum shows the saddle number in the model. Ratio columns show the
number of simpification executed. Local columns show the timings obtained using the local PR-star strategy,
while Global columns show the timings obtained with a global PR-star strategy.

Data |S| kv

Storage
Timings

Low noise removal Medium noise removal High noise removal

Local Global
Ratio

Local Global
Ratio

Local Global
Ratio

Local Global

tot % tot % tot % tot % tot % tot % tot % tot %

maui 25.1K
IA 61 88 6.29K 10.4 12.5K 10.6 18.1K 10.6
200 15 22 18 27

5.12K
17.4 167 16.0 154

12.0K
20.1 190 16.0 152

18.1K
24.3 230 16.2 153

400 23 34 26 38 17.7 170 15.5 149 20.3 192 15.7 149 23.9 226 16.2 153

baia 17.4K
IA 121 85 4.34K 9.67 8.82K 9.73 12.8K 9.76
100 27 19 29 20

2.54K
14.1 146 18.1 187

7.74K
14.6 150 18.1 186

12.3K
15.5 158 18.2 186

300 30 21 32 23 16.9 174 21.3 220 17.4 179 21.5 221 18.0 184 21.8 224

puget 227K
IA 309 92 56.8K 38.7 111K 39.9 170K 40.7
400 49 15 79 24

45.5K
51.2 133 56.5 146

101K
56.1 141 60.7 152

163K
66.8 164 61.3 150

800 66 20 96 29 56.2 145 59.6 154 61.3 154 64.1 161 70.2 172 66.0 162

plifications that can be executed during a simplification run.
The two PR-star quadtree implementations (with local or
global MIG) obtain similar simplification ratios, and both
always execute fewer simplifications with respect to the IA
implementation. This difference is more noticeable for lower
threshold values.

The timings shown in Table 2 consider all the simplification
steps, i.e., for the IA algorithms and the global PR-star strat-
egy, we count the time required for the MIG computation
and for simplification, while, for the local PR-star strategy,
we consider the simplification procedure, which encompasses
the local MIG computation. The IA implementation is al-
ways faster than both PR-star implementations, requiring
from half the time to 40% less time for all thresholds. In the
IA implementation, the simplification timings corresponds
to the 1% of the time requirements, while the remaining time
is required by the MIG computation. The same holds also
for the global PR-star implementation, for which half of the
time is spent in the MIG computation and almost the other
half is required by the extraction of the topological relations
and by cache management.

Comparing now the two PR-star implementations, we can

see that the local strategy is faster on baia dataset, on
which it requires from 15% to 20% less time, regardless of
the threshold values, and on puget dataset for lower and
medium thresholds, requiring from 5% to 10% less time.
Conversely, the global strategy is faster on maui dataset, on
which it requires from 10% to 50% less time, increasing the
saving for the highest threshold; and on puget dataset, on
which, for the highest threshold, requires from 5% to 10%
less time. These results denote that the local strategy cannot
amortize the local MIG extraction and the successive local
simplifications when the tree navigation is intense, and when
the persistence thresholds become larger.

The most compact approach is the local PR-star strategy,
which requires a fraction of the storage required for the MIG,
with respect to the IA and the global PR-star strategy, and a
fraction of the storage for the priority queue, with respect to
the IA data structure. Thus, with respect to the IA structure,
it requires from 60% to 85% less memory, and with respect
to the global PR-star strategy, it requires from 2% (on baia)
to 10% (on puget) less space. Moreover, the global PR-star
strategy, even if it explicitly stores a global MIG structure,
it is still more compact than the IA data structure as it
requires from 55% to 75% less memory.



8. CONCLUDING REMARKS
We have presented an efficient tool for computing and simpli-
fying discrete Morse decompositions on triangulated terrains.
We have described a compact encoding of a discrete Morse
gradient field using the local frame representation, which as-
sociates information with the triangles. This encoding makes
the IA data structure a very compact alternative to the other
data structures, like IG or SIG, which are the common encod-
ing of cell and simplicial complexes endowed with a Forman
gradient. We have also shown that, at the expense of some
additional computation, we can achieve greater savings by
using the PR-star quadtree. We have developed a modular
approach to the simplification of the Forman gradient based
on the PR-star quadtree and we have compared it with a
global simplification algorithm we have developed based on
the IA data structure.

Both our gradient encoding and our formulation of topo-
logical features are independent of the data structure used
to encode the mesh (as long as it encodes the vertices and
the triangles), of the method in which the gradient field
is computed and of the algorithms used for feature extrac-
tion. Thus, we anticipate our approach benefiting from the-
oretical advances in data structures on the one hand and
in computational topology on the other. Specifically, we
are developing a framework for homology computation on
arbitrary-dimensional shapes discretized as simplicial meshes
for machine learning applications. This approach is based
on the discrete Morse decomposition and on the general-
ization of the IA data structure to such meshes. Our next
step will be to develop a dimension-independent version of
the PR-star tree and to perform the homology computation
on it, where we expect an even larger saving in space and
computation times.

We are currently implementing an algorithm for persistence-
based simplification, which is based on the simplification
operators in [6], expressed in terms of gradient field sim-
plification. Persistence-based simplification will allow us to
extract morphological features, such as the various manifolds,
the extrema graphs (which are formed by the ascending and
descending 1-manifolds) and the 1-skeleton of the MS com-
plex at different levels of persistence, as in [20]. It can also
remove the need for the preprocessing mesh simplification
step (as discussed in Section 7).

In our future work, we plan to use a modified PR-star tree
to encode the extracted i-manifolds, or the MS cells, which
would allow us to reconstruct the topological connectivity
of the various complexes as well as to efficiently perform
spatial queries on them. Our approach can also be extended
to time-varying datasets defined on simplicial meshes, and to
tetrahedral shapes in 4D space (such as isosurfaces of time-
varying fields), since the PR-star tree, the gradient encoding
and the feature extraction are all dimension-independent.
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