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ABSTRACT
Bintrees based on longest edge bisection and hierarchies of dia-
monds are popular multiresolution techniques on regularly sam-
pled terrain datasets. In this work, we consider sparse terrain
pyramids as a compact multiresolution representation for terrain
datasets whose samples are a subset of those lying on a regular grid.
While previous diamond-based approaches can efficiently repre-
sent meshes built on a complete grid of resolution (2k +1)2, this is
not suitable when the field values are uniform in large areas or sim-
ply non-existent. We explore properties of diamonds to simplify
an encoding of the implicit dependency relationship between dia-
monds. Additionally, we introduce a diamond clustering technique
to further reduce the geometric and topological overhead of such
representations. We demonstrate the coherence of our clustering
technique as well as the compactness of our representation.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Hierarchy and geometric transformations; I.3.6 [Com-
puter Graphics]: Methodology and Techniques—Graphics data
structures and data types

General Terms
Multiresolution Terrain Models, Nested Triangle Meshes, Longest
Edge Bisection, Diamond Hierarchies

1. INTRODUCTION
Digital terrains are generally defined by elevation values given

at a discrete set of points distributed within a 2D domain. Since
the sizes of current datasets can exceed one billion points [3, 12], a
multiresolution approach is needed in order to allow extracting rep-
resentations of the terrain at a level of detail which can be uniform
or variable over the domain and based on a much smaller number
of data points.

Triangulated Irregular Networks (TINs) are a common represen-
tation for terrains which explicitly encode the vertices of each tri-
angle along with the field attributes. Since there are few restrictions
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on the locations of vertices within the domain, TINs allow a high
degree of adaptability to features within the terrain, such as critical
points and lines by using a minimum number of samples. However,
this representation has a geometric overhead, due to the explicit
storage of the coordinates, and a topological overhead, due to the
explicit representation of the connectivity among the vertices.

Conversely, regularly sampled terrains have no geometric or top-
ological overhead since the coordinates can be directly inferred
from the position of the data points in a grid but suffer from a high
sampling overhead, that is, the overhead related to the number of
samples required to represent the features within the dataset, due to
the rigid structure of such grids.

Quadtree representations are a typical compromise between the
two representations since their vertices lie along a regular grid while
allowing the representation to adapt to the features of the dataset.
The major drawbacks with using quadtrees is that they produce
discontinuous representations of the terrain, that is, surfaces with
cracks. One way to solve the problem is to use restricted quadtrees,
i.e., quadtrees in which neighboring blocks can differ by at most
one level and for which the blocks are suitably triangulated [6, 21].

This has led to the development of multiresolution terrain models
for points on a regular grid obtained through Longest Edge Bisec-
tion (LEB), which generates a nested triangle mesh consisting of
right triangles. Such a mesh is known as a Hierarchy of Right Tri-
angles (HRT) and is obtained by subdividing a square domain into
two right triangles along one of its diagonals. Each triangle in the
mesh is generated by bisecting the right angle of its parent trian-
gle. LEB meshes in fact have a higher degree of adaptability to the
features of a domain than restricted quadtrees, since LEB subdivi-
sions double rather than quadruple the elements of a cell. Further-
more, they have a higher representational power than quadtrees,
i.e., the set of triangulations derivable from LEB subdivisions is
a superset of those derivable from restricted quadtrees [4]. Com-
pared with multiresolution terrain models based on irregular TINs,
like the Multi-Triangulation (MT), they can be encoded implicitly
and thus have smaller storage costs [5].

LEB meshes have been used mainly for terrain visualization in
games, flight simulators, fly-throughs on terrains, etc. In our work,
we focus on the use of such meshes for representing terrains in a
Geographic Information System (GIS). This implies the need for
updating the representation efficiently and for representing sparse
regular grids, that is, situations in which the points are a subset of
those contained in a regular grid.

However, current representations for LEB meshes in the form of
a triangle bintree, or a hierarchy of diamonds (i.e., pairs of trian-
gles sharing their longest edge and which need to be subdivided
at the same time) are only suitable for LEB meshes built on com-
plete regular grids, i.e., regular grids in which data are present at all



the vertices. When modeling diamonds on a terrain where the com-
plete hierarchy of diamonds is present, the diamonds are associated
with the grid points and the mesh topology is implicitly encoded,
thus resulting in an array representation of the height and the er-
ror values at the vertices of the grid. An issue here is to provide a
representation when the field values are uniform in large areas, or
simply not available. In this case, we will have a nested mesh in
which the leaves have different sizes.

We have developed a representation for an LEB mesh based on
an incomplete grid, that we call a Sparse Terrain Pyramid (STP).
In an STP, the mesh topology remains implicit in the model, but the
set of diamonds in the mesh needs to be represented, incurring ge-
ometric overhead relating to the spatial location of each diamond.
Whereas the height component of a vertex requires only a single
value, its coordinates require two values, thus causing naive rep-
resentations of such sparse diamond sets to require significantly
more storage. Thus, a method to reduce this geometric overhead
can greatly optimize such a representation.

To this aim, we introduce super-squares, a novel clustering struc-
ture over a hierarchical portion of the domain that implicitly in-
dexes the diamonds contained within it. The geometric overhead
incurred by representing the diamonds contained within a particu-
lar super-square is largely reduced. To the best of our knowledge,
our STP approach is the first pointerless representation for sparse
LEB meshes that provides random access to the mesh elements and
efficiently supports general selective refinement queries.

The remainder of this paper is organized as follows. We review
related work in Section 2. In Section 3, we discuss the diamond
data structure and in Section 4, we discuss full and sparse terrain
pyramids. In Section 5, we introduce our compact encoding and
implicit clustering of spatially coherent diamonds. In Section 6,
we introduce our diamond-based multiresolution representation for
STPs. We then discuss our encoding of the extracted meshes in
Section 7. Section 8 introduces an efficient technique to combine
terrain datasets at different resolutions. In Section 9 we present
experimental results and comparisons. Finally, we draw some con-
cluding remarks in Section 10.

2. RELATED WORK
Multiresolution techniques based on LEB over regular terrains

are popular as they allow better adaptability than quadtree represen-
tations and do not suffer from the presence of cracks in the meshes.
All triangles in an LEB mesh have a single longest edge which is
subdivided during a refinement operation. Crack-free meshes are
guaranteed by allowing triangles to subdivide only when both tri-
angles along the longest edge are the same size. Thus, refinements
either require efficient neighbor finding operations on the triangles
of the mesh, or a representation that directly encodes these corre-
sponding pairs of triangles, also known as diamonds. The former
techniques are typically represented as a pair of binary trees (bin-
trees) [7, 8, 9, 10, 2, 3] while, in the latter, the dependency rela-
tionship between diamonds can be encoded as a directed acyclic
graph (DAG) [14, 15, 12]. Variable-resolution meshes are then ex-
tracted from the hierarchy through a process known as selective
refinement, where a user-defined error metric guides the extraction
of meshes from the model. In this work, we encode diamonds using
a DAG whose arcs are determined from the implicit dependency re-
lationship between diamonds. Recent surveys of these semi-regular
multiresolution models can be found in [16, 19].

Lindstrom et al. [14] introduce a bottom-up terrain simplification
algorithm over regular grids through triangle fusion. They store
large terrains out-of-core as rectangular blocks and use the depen-
dency relationship between triangles to enforce conforming mesh

updates. Duchaineau et al. [7] introduce a view-dependent top-
down incremental selective refinement algorithm for LEB meshes.
Frame-to-frame coherence is supported through the use of a dual
queue system, where one queue holds mergeable triangles and the
other holds refineable triangles. Evans et al. [8] present an efficient
neighbor finding algorithm for LEB meshes using location codes,
where triangles are encoded by their path through the binary tree.
However, their approach has some inefficiencies in that they store
an error value for each triangle rather than for each refinement ver-
tex and that they use explicit pointers to children nodes.

Pajarola [18] applies the dependency relationship of [14] to cre-
ate a crack-free restricted quadtree triangulation from quadtree sub-
divisions of a terrain. He introduces a top-down refinement as well
as a bottom-up simplification algorithm over such datasets, and ex-
tracts the level and direction of a quadtree node directly from the
coordinates of its center. Lindstrom and Pascucci [15] provide an
out-of-core indexing scheme for diamond vertices based on a hier-
archical Π-order space filling curve, which enables efficient cache-
coherent access to the samples. Their error metric includes an ap-
proximation error as well as a nested bounding sphere radius for
distance-dependent refinement (as first introduced by Blow [1]).
In this scheme, the full 3D coordinates as well as the approxima-
tion error and bounding sphere radius of each point are explicitly
encoded as 32 bit floating points numbers, requiring a total of 20
bytes per vertex. Recently, Gerstner [10] introduced an implicit
optimally tight octagon-shaped bounding hierarchy for distance-
dependent rendering based on a diamond’s hierarchical neighbors.
In this work, we introduce an implicit encoding of a diamond’s
type through the coordinates of its central vertex which allows us
to find diamond vertices, parents, children and neighbors in O(1)
time. This encoding is similar to that of Pajarola [18] while allow-
ing us to extract more information. Furthermore, we cluster related
diamonds to exploit the spatial and hierarchical coherence among
samples, thus enabling a compact encoding of sparse sets of sam-
ples.

Many optimizations have been developed to enable interactive
rendering of large LEB meshes. Out-of-core paging systems en-
able interactive rendering of gigantic datasets (currently defined as
having on the order of a billion or more points). Although block-
based paging coupled with LRU cache replacement [18, 12] is the
most common technique, empirical results presented in [15] indi-
cate that block-based paging has worse performance (by an order
of magnitude) than simple array based (row major) ordering, and
that a hierarchical level based ordering (quadtree or Π-order) per-
forms one or two orders of magnitude better. View-dependent re-
finement based on windowing [18], screen space error [14, 7] or
nested bounding spheres [1, 15, 2, 3, 9] are typically used in con-
junction with view-frustum culling to prioritize rendering to visible
triangles. Triangle stripping is another optimization that better uti-
lizes the graphics hardware [7, 18, 9].

More recently, an LEB subdivision model has been used as a
spatial access structure for clusters of updates. Although this re-
duces the adaptability of such meshes, clustered updates take better
advantage of the graphics hardware architecture. In [2, 3], the trian-
gles of the bintrees store an index to a list of TIN triangles, which
is generated in a fine-to-coarse preprocessing step from the orig-
inal dataset via edge-contraction operations. Textured color maps
are applied to the terrain using a corresponding tiled quadtree. Hwa
et al. [12] present a similar technique using a DAG of diamonds to
access clusters of updates whose vertices lie along the regular grid.
The novelty of this method is to apply the diamond hierarchy to the
height values as well as textured color maps. Since these techniques
are relevant for interactive rendering of diamond hierarchies, they



can be incorporated into our STP approach. However, since many
of these rendering optimizations require duplication of mesh geom-
etry or rearranging the geometry into formats that make it difficult
to access individual elements, they are not applicable to terrain pro-
cessing algorithms such as visibility analysis, terrain morphology
and dynamic updates to the terrain which are the focus of our ap-
proach. As such, we will not focus on interactive view-dependent
rendering in this paper.

All the above methods are suitable only for representing an LEB
mesh built from a regular grid where all the vertices are present, and
thus the representations proposed there are either a full containment
hierarchy or a complete hierarchy of diamonds, implicitly or explic-
itly encoded. Consequently, many of the above techniques exploit
the regularity of the dataset to reduce the geometric and topologi-
cal overhead of the multiresolution model. Since all vertices in a
(2k + 1)2 terrain are present, they can be stored linearly and ac-
cessed using simple array notation or a more complicated indexing
scheme [15, 20]. Furthermore, the implicit dependency relation
can be used to locate parents, children and neighboring triangles,
enabling pointerless representations. However, when samples are
redundant, as in large bodies of water, or simply unavailable, this
representation is no longer efficient.

To the best of our knowledge, the only method to encode an in-
complete HRT generated through longest edge bisection has been
proposed by Gerstner [9]. He introduces a compression method
based on a linearization of the domain using a Sierpinski space-
filling curve associated with the complete hierarchy of triangles.
He uses a containment hierarchy as a multiresolution representa-
tion, and encodes in each node of the resulting partial tree the num-
ber of nodes that need to be skipped if the node is not to be refined.
Variable-size relative pointers are used to indicate the number of
bytes to skip if a node is not refined, and an average overhead of
3 bytes per vertex is reported. However, since each node is ac-
cessed via pointers stored in its parents, this representation does
not provide random access to the data in the model. Gerstner [9]
also introduces the notion of incorporating higher resolution blocks
of samples into a coarse dataset. Although few details are given re-
garding how to accomplish this, he indicates that this requires the
addition of some interpolated samples to align the new data with
the hierarchy.

3. HIERARCHIES OF DIAMONDS
A mesh in which all cells are defined by the uniform subdivision

of a cell into scaled copies of it is called a nested mesh. A special
class of nested meshes are those generated by bisecting isosceles
right triangles along their hypotenuse, and are denoted as Longest
Edge Bisection (LEB) meshes. The bisection rule for a triangle t
in such a mesh consists of replacing t with the two triangles ob-
tained by splitting t along the line defined by the middle point of its
longest edge e and the vertex of t opposite to e. When this rule is
applied recursively to an initial decomposition of a square domain
into two triangles sharing a diagonal of the square it generates two
congruent classes of triangles, each with a single longest edge. We
denote the class of triangles congruent to those sharing a diagonal
of the base square as 0-triangles, and the triangles congruent to the
ones obtained by splitting a 0-triangle as 1-triangles. The triangles
obtained by splitting 1-triangles are congruent to 0-triangles. Ob-
serve that all triangle edges in these meshes are aligned with either
the diagonal of an axis aligned square or an edge of such a square.

Given an LEB mesh Σ, the pair of triangles sharing a common
longest edge form a diamond. We denote the longest edge as the
spine of the diamond with spine vertices v1 and v2. The mid-
point vc of the spine is called the central vertex of the diamond.

Note that a diamond can be uniquely identified by its spine or,
equivalently, by its central vertex. Since each triangle has a sin-
gle longest edge, both triangles in a diamond belong to the same
class of triangles. As a consequence, there are two different con-
gruence classes of diamonds: those with spines aligned with square
diagonals (0-diamonds, see Figure 1(a)), or with square sides (1-
diamonds, see Figure 1(b)). The domain of a diamond is thus an
axis-aligned square (0-diamond) or a square that is rotated 45 de-
grees (1-diamond).

vc

v₁

v₂

(a) 0-Diamond

vc

v₁

v₂
(b) 1-Diamond

Figure 1: The two classes of diamonds. In both cases, the spine
is the internal edge with extreme vertices v1 and v2 and the
central vertex vc is located at the midpoint of the spine.

Given a square domain containing regularly sampled terrain data,
let us consider the collection T of all the triangles generated from
the initial subdivision of the square domain through the longest
edge bisection rule. If we consider the collection ∆ of all dia-
monds associated with the longest edges of the triangles in T, the
containment relation between the triangles in T induces a parent-
child dependency relation over set ∆. A diamond δ′ is a parent
of another diamond δ if and only if some triangle in δ is created
by the splitting of a triangle in δ′. If δ′ is a parent of δ, then δ is
called a child of δ′. For a diamond δ, we denote the set of its chil-
dren diamonds as Children(δ), and the set of its parent diamonds
as Parents(δ). Note that for any diamond δ, Children(δ) consist of
the diamonds whose spines coincide with the four external edges of
δ, and Parents(δ) consists of the two diamonds whose central ver-
tices coincide with the right-angled vertices of δ. Since non-spine
edges are always smaller than spine edges (by a factor of

√
2), the

transitive closure of the parent-child relation defines a partial order
on ∆ which can be described using a DAG.

4. TERRAIN PYRAMIDS
Given an LEB mesh Σ generated by using all the vertices V of

a terrain data set, we call the set ∆ of all diamonds, whose central
vertices have coordinates at the points of V , along with their parent-
child dependency relation a Full Terrain Pyramid (FTP). Thus, ∆
includes all points of V except the four corner vertices of the do-
main. The root diamond is the diamond with vertices at the corners
of the domain. Those diamonds whose central vertices belong to
the domain boundary are called boundary diamonds and all other
diamonds are non-boundary diamonds. Since the central vertex of
all 0-diamonds lies at the center of a square, 0-diamonds are never
boundary diamonds.

The depth of a diamond δ within a terrain pyramid is the length
of a path from the root diamond to δ in the DAG, i.e. the number
of subdivisions required to obtain δ. The level of an i-diamond δi
is the number of i-diamonds above δi along any path to the root
diamond and is denoted as LEVEL(δi). Since the class of dia-
monds cycles with every two subdivisions, the level of a diamond
is its depth divided by 2, and its class is its depth modulo 2. If



the dimensions of the grid are (2k + 1)2, then there are k levels
in the hierarchy, and k is the MAXLEVEL of the hierarchy. Fi-
nally, the scale of a diamond δ is defined in terms of its level as
SCALE(δ) = MAXLEVEL − LEVEL(δ).

An FTP built on a grid of dimensions m = (2k + 1)2 can be
implicitly encoded by just storing the height and error values at the
vertices of the grid. For each vertex v, the error associated with v is
the error computed for approximating the original scalar field in the
diamond δ having v as its central vertex. Specifically, in a prepro-
cessing step, we assign to v the maximum of the interpolation error
of all samples in the domain of its associated diamond δ. Since
vertices of a diamond δ at level ` (and depth d = 2` + i) cannot
contribute to the interpolation error, while points along an edge of
δ belong to at most two diamonds at depth d and internal points of
δ belong only to δ at depth d, the error evaluation requiresO(k ·m)
operations, where k is the maximum level of the hierarchy and m
is the number of points in the hierarchy. The parent-child relation
in a full terrain pyramid is implicit, since it can be inferred directly
from the encoding of a diamond’s central vertex (see Section 5.2).

A Sparse Terrain Pyramid (STP) consists of a subset ∆∂ of the
diamonds in the full hierarchy ∆ subject to the constraint that if a
diamond δ belongs to ∆∂ , then ∆∂ contains all diamonds which
are predecessors (ancestors) of δ in ∆∂ with respect to the parent-
child relation. These are all the diamonds which belong to a path
from the root diamond to δ in the DAG.

Sparse terrain pyramids are important, for example, when not all
the data in a volume data set are available and instead of having
a full grid, we have the data points at the vertices of a quadtree
subdivision of the domain, or when the portion of data of interest
is small compared to the full dataset, as, for instance, when only
certain portions of the dataset are available at a higher resolution.
Furthermore, when the terrain is locally oversampled, e.g., samples
covering a large body of water, we can accurately interpolate these
values from samples at a higher resolution. Figure 2 shows a zero
approximation error sparse representation of a 6000×4800 sample
tile from the gtopo30 dataset [22]. For this dataset, an STP requires
less than 1/6 of the original samples since flat regions do not need
to be subdivided to the highest resolution to obtain an accurate ap-
proximation.

(a) GTOPO30 Tile (b) Sparse Pyramid

Figure 2: Terrains covering large flat regions such as oceans are
oversampled by a regular grid (a). A zero error sparse repre-
sentation of this terrain (b) requires less than 1/6 of the samples
from the original dataset. Image (a) courtesy of USGS [22].

The main challenge in representing such sparse datasets is to ef-
ficiently encode the coordinates of its diamonds. Whereas the co-

ordinates of diamonds in an FTP can be implicitly determined such
a representation is impractical for an STP, where much of the data
is non-existent or redundant. However, explicit representations for
the diamonds can be inefficient as well since they require an en-
coding of the spatial location of each vertex. By exploiting the spa-
tial coherence between the diamonds in a partial hierarchy, we can
achieve a compromise in terms of the explicit and implicit storage
of such a representation.

5. COMPACT ENCODING OF DIAMONDS
The ingredients of a hierarchy of diamonds are the diamonds

and the parent-child dependency relation. For full terrain pyra-
mids, where the central vertices of diamonds can be determined
from the representation (e.g. using array notation) this creates an
entirely implicit representation. However, sparse terrain pyramids
require more explicit schemes. We thus begin by introducing super-
squares as a method of clustering spatially coherent diamonds. This
significantly reduces the geometric overhead of an STP representa-
tion. We then introduce a method to determine all geometric and
hierarchical elements of a diamond entirely from the binary repre-
sentation of its central vertex.

5.1 Clustering Diamonds with Super-Squares
Grouping pairs of triangles into diamonds is a powerful abstrac-

tion that enables the efficient extraction of conforming meshes from
an LEB mesh. We introduce a further abstraction within the hierar-
chy of diamonds representation, the super-square, which enables a
compact representation for sparse terrain pyramids. A super-square
is a highly symmetric structured set of edges within the hierarchy
that tile each level of resolution of the LEB mesh. Figure 3 shows
the repeating structure of super-squares at two different scales.

Figure 3: Super-squares are sets of edges that tile each level of
resolution within the hierarchy. The super-squares on the right
are one level of resolution higher than the one on the left.

If we consider a square domain (without any edges), the edges
of a super-square are formed in two stages. First, by the diagonal
edges joining the center of the square to its four corners, and sec-
ond, by the edges joining the midpoint of each of the four edges
of the square to the two closest square corners, and to the square’s
center, yielding a total of 16 edges. Recall that there is a one to
one correspondence between diamonds and edges of an LEB mesh
through the diamond’s spine (or alternatively, through its central
vertex). Thus a super-square corresponds to two consecutive levels
in a containment triangle hierarchy being formed by four adjacent
0-diamonds which are in turn subdivided into 1-diamonds.

To ensure that each edge in the LEB mesh is only associated
with a single super-square, we adopt the common convention used
for quadtrees [20] that a super-square uses half-open intervals, i.e.



it contains the edges on its lower boundaries but not the edges on
its upper boundaries. Thus, we consider any edge of a super-square
σ whose endpoints are both on an upper boundary of σ to belong
to another super-square. In other words, if the center point of a
spine lies on one of the upper boundaries of σ, then that diamond
belongs to a neighboring super-square. Consequently, of the 16
original edges, a super-square only contains the 12 edges that sat-
isfy the half-open criteria and consists of 4 square diagonals (0-
diamonds) and 8 square edges (1-diamonds). This is illustrated in
Figure 4(a), where the solid lines with filled squares indicate the
spines and central vertices of 0-diamonds, the solid lines with filled
circles indicate the spines and central vertices of 1-diamonds and
the dashed lines with hollow circles indicate diamonds belonging
to neighboring super-squares due to the half-open interval conven-
tion.

00
00

01

10

11

01 10 11

(a) Diamonds in a Super-Square

00

10

11

(b) Diamond as offset

Figure 4: (a) Correspondence between super-squares and di-
amonds: each diamond’s spine coincides with an edge (solid
lines) of a single super-square. (b) Alternatively, a diamond’s
central vertex lies at the midpoint of an edge of a super-square.

We associate a unique type τ with each diamond based on the
super-square edge with which its spine coincides. If we consider
the lower left corner of a super-square to be its local origin, the
type corresponds to the offset of the midpoint of each edge from
this origin, and is represented as an ordered pair. Figure 4 illus-
trates these offsets as binary numbers along the x- and y-axes. This
association allows us to simplify operations on the diamond mesh
and to create lookup tables for a diamond based on its type.

5.2 Representing Diamonds
Using a few simple bit operations on the binary representation

of a diamond’s central vertex, we can directly extract properties of
a diamond, such as its type, scale and corresponding super-square.
A diamond δ’s hierarchical and geometric elements such as the co-
ordinates of its vertices and the central vertices of its parents and
children are then implicitly determined from δ’s scale and type us-
ing scaled offsets from δ’s central vertex.

Let δ be a diamond with central vertex vc and let bx and by de-
note the binary representation of the x and y coordinates of vc. The
coordinates encode three pieces of information. First, the scale of
the diamond, s = SCALE(δ) is encoded by the minimum of the
number of trailing zeros in bx and by . Next, the two bits at positions
s + 1 and s + 2 from the right of bx and by encode the diamond
type, τ(δ). Furthermore, the rightmost bit of each component of
τ determines the class of δ. By the definition of SCALE(δ) they
cannot both be zero; if they are both non-zero, δ is a 0-diamond,
otherwise, δ is a 1-diamond.

Finally, by clearing the type bits of δ, we can evaluate the origin
of the super-square σ to which δ is associated, i.e. the coordinates

of the lower left corner of σ. Thus, an alternate interpretation of
a diamond’s type τ is that it represents the unscaled offset of δ’s
central vertex from the origin of its associated super-square σ. We
note that the coordinates of the central vertices of all diamonds as-
sociated with a given super-square σ agree on all bits but the type
bits (i.e. those at positions s+ 1 and s+ 2).

Since all vertices of the diamond mesh have integral coordinates,
and there are only 12 types of diamonds, these offsets can be pre-
calculated and accessed via a lookup table. We do so by keeping
track of vertices and parent-child relationships while using a sub-
division scheme such as the one given in [17]. All unscaled offsets
~f have components fi ∈ {−1, 0, 1}. The actual coordinates of an
element p of δ at unscaled offset ~f can be computed at runtime as:

p = vc + 2Scale(δ) ∗ ~f.

As an example, consider a diamond δ whose central vertex vc
has coordinates (28, 8). We first look at the binary representation
of its coordinates, bx = 0111002 and by = 0010002. Its scale,
type and corresponding super-square can be determined from vc as
follows: bx has two trailing zeros and by has three trailing zeros, so
SCALE(δ) = min(2, 3) = 2. The diamond type is determined by
bits 3 and 4 of bx and by and is thus τ(δ) = (112, 102) = (3, 2)
(see Figure 4(b)). Since the set of rightmost bits of τ contains a
single zero, δ is a 1-diamond. Finally, by clearing bits 3 and 4 of
bx and by , we find the coordinates of the super-square to which δ
is associated, namely, the one at scale 2 whose origin is located at
coordinates (0100002, 0000002) = (16, 0). To find an element at
offset (−1, 0) from vc, we first scale the offset by 2Scale(δ) = 4 and
add the result to vc to obtain: (28, 8) + 4 ∗ (−1, 0) = (24, 8).

6. STP DATA STRUCTURE
We utilize the super-square notion in several ways when model-

ing multiresolution terrains. First, it is the conceptual model of our
multiresolution scheme, simplifying the extraction of diamond type
and scale from a diamond’s central vertex (as introduced in Sec-
tion 5). Super-square clustering also enables an efficient encoding
of sparse terrain pyramids and variable-resolution triangle meshes
extracted from an STP. Finally, super-square clustering reduces the
dependency of our representation from the resolution of its origi-
nating dataset. We discuss the first application in this section, and
the latter two applications in the sections that follow.

Due to the transitive closure requirement in an STP, there is
a high degree of hierarchical coherence in addition to the spatial
coherence among samples associated with a given super-square.
Namely, if a diamond is required to satisfy a given error criterion,
it is likely that its neighbors, parents and children are also neces-
sary. Consequently, of the 12 diamonds per super-square, it is com-
mon for an STP representation to average 9 or more diamonds per
super-square, with many super-squares containing all 12 diamonds.
The non-full super-squares are typically those that are close to the
boundary of the domain or those containing leaf nodes.

This observation leads us to a representation for a sparse terrain
pyramid that exploits the coherence within super-squares. We use
the 1-1 correspondence between the central vertices of diamonds
and super-square edges to store information about vertices, such as
their associated height values, within super-squares. Thus, super-
squares encode a map from grid points to diamonds. E.g., given a
vertex whose corresponding super-square is σ, and whose type is
τ , then σ[τ ] corresponds to the diamond whose central vertex lies
on edge τ of σ.

An implementation of this mapping must carefully balance stor-
age space and computational speed. When speed is the most impor-



tant factor, a super-square’s internal map can be implemented using
an array of 12 elements. If instead we would like to minimize stor-
age space e.g. as a file format, then a bit field of 12 bits is sufficient
to track and locate the diamonds. As a compromise, a tree or hash
map can be used to access the diamonds in a super-square. We note
that since the number of diamonds per super-square is strictly lim-
ited to 12, all of these operations can be handled in O(1) time. For
our implementation, super-squares in memory use a 12 element ar-
ray to speed up access to elements, while super-squares on disk use
bit flags to index the individual diamonds.

Each vertex requires 4 bytes: the elevation value is stored as a
2 byte signed integer and the approximation error for its associ-
ated diamond is quantized using 2 bytes into the range [0, 1]. For
each super-square, we need only the spatial location of its lower left
corner as well as a bit-flag indicating which diamonds are present.
This requires a total of 6 bytes per super-square: 2 bytes for each
coordinate and one bit corresponding to each of the 12 possible di-
amonds (represented using two bytes). We eliminate the need to
store a super-square’s scale by storing all super-squares from the
same scale together. The set of super-squares at the same scale can
then be indexed by its scale.

This partitioning of super-squares by their scale has an additional
advantage as it provides a means of reducing the dependency on
the resolution of the original dataset. Since the sparse pyramid
structure stores the associated elevation and error values of dia-
monds within super-squares, it is self contained and thus no longer
requires the original DEM dataset. An application of this is to aug-
ment a dataset with samples from a corresponding dataset of higher
resolution, which we discuss in Section 8.

Finally, although they are not diamonds, we apply the transfor-
mation of Section 5 to the four corner vertices of the domain. The
lower left corner maps to a super-square with coordinates (0, 0)
whose scale is determined by the number of bits used by the ma-
chine to represent coordinates (e.g. 32 for 4 byte integers). The
other three corners map to a super-square at location (0, 0) at a
scale of MAXLEVEL + 1.

Discussion.
Super-square clustering of diamonds is an efficient representa-

tion of an STP when the super-squares have a high density i.e.,
average number of diamonds per super-square, but due to the geo-
metric and topological overhead of the super-square representation
a full hierarchy is more efficient when the number of omitted sam-
ples is not sufficiently smaller than the number of samples in the
original dataset.

Recall that an FTP built on a grid of dimension (2k+1)2 requires
storage of a scalar value and an error value at each vertex, which
are implicitly associated with the central vertex of each diamond
and are encoded as arrays. If |∆| is the number of diamonds in
the full hierarchy, then a full representation requires 4 ∗ |∆| bytes.
Our super-square based STP requires 6 bytes per super-square, and
4 bytes for each represented diamond. Thus, the size of a super-
square based STP is 6∗|σ|+4∗|δ|,where |σ| is the number of super-
squares and |δ| is the number of diamonds in the multiresolution
model. Observe that this representation only requires the storage
of elevation values for diamonds with children, and thus does not
require any storage for the diamonds at the highest resolution.

Thus, a super-square based STP requires less storage than the
FTP when

6 ∗ |σ|+ 4 ∗ |δ| < 4 ∗ |∆|.

Let α = |δ|/|σ| be the average super-square density, then substi-

tuting α for σ and simplifying, we have

(4 +
6

α
) ∗ |δ| < 4 ∗ |∆|,

and thus, in terms of the super-square density, our sparse pyramid
representation yields a compressed dataset when we have fewer
than ( 4

4+6/α
) of the diamonds as the FTP. Table 1 lists these per-

centages for integral values of α.
On the other hand, an explicit STP representation without super-

squares would require 8 bytes per diamond, i.e. 4 bytes for the co-
ordinates of the central vertex in addition to the 2 bytes each for the
elevation and error values. Thus a super-square based STP is more
compact than an explicit STP when:

6 ∗ |σ|+ 4 ∗ |δ| < 8 ∗ |δ|,

or, substituting σ with α, when α > 1.5.

7. ENCODING EXTRACTED MESHES
Crack-free variable-resolution triangle meshes are extracted from

an STP using a process called selective refinement, which is per-
formed by traversing the STP hierarchy in a top-down manner while
preserving the dependency relation. This is done through a cut of
the (implicit) DAG, where the set of diamonds along the active
front of the cut represent the current state of the refinement pro-
cess. This process is guided by a user-defined predicate called the
error criterion, which can be based on factors such as the approxi-
mation error, height value, location, distance to the view point and
projected screen error of each diamond. To ensure that extracted
meshes do not contain cracks, the selective refinement process re-
quires all of a diamond δ’s parents to subdivide before it can update
δ. Although, in the worst case, this requirement can trigger subdi-
visions recursively up to the root of the hierarchy, the cost of such
non-local subdivisions is amortized over the set of diamonds in the
neighborhood of δ.

Consequently, an efficient implementation of selective refine-
ment requires fast access to the diamonds in the active front as well
as their ancestors and descendants. Recall that each non-boundary
diamond contains the two triangles sharing the longest edge of the
diamond. Also, each triangle in the front is only associated with a
diamond after its LEB parent has subdivided. Thus, diamonds in
an active front require one bit to determine the presence or absence
of each of their triangles. Since each bit also corresponds to the
subdivision status of that triangle’s parent diamond, this encoding
enables efficient updates to diamonds in the active front.

We encode an active front of a selective refinement query in
terms of super-squares as well. Each super-square in such a front
requires 7 bytes: 3 bytes to represent the bit flags (e.g. 1 bit for each
of the 24 possible triangles) in addition to the 4 bytes for the coor-
dinates of its origin. Empirically, we found that these active front
super-squares average between 5 and 7 triangles, and thus, our rep-
resentation requires between 1−1.4 bytes per triangle in the active
front. In contrast, a similar diamond-based representation would
require 4 bytes to index each diamond in addition to the 2 bits of
bookkeeping. Although a more efficient (4 bit per tree branch) code
was introduced in [9] for bintrees, we note that our method enables
random access to the elements, and does not require the use of a
finite automaton to track the level of diamonds.

8. MERGING CORRESPONDING STPS
In this Section, we consider the problem of merging two STPs at

different resolutions, covering portions of the same domain, where



α 1 2 3 4 5 6 7 8 9 10 11 12
4

(4+6/α)
40% 57% 67% 73% 77% 80% 82% 84% 86% 87% 88% 89%

Table 1: Relationship between the super-square density α = |δ|/|σ| and the percentage of total diamonds that can be represented by
a sparse pyramid while still being more compact than the full hierarchy.

corresponding samples do not necessarily map to the same coordi-
nates. We observe that the resolution of a dataset is a bottom-up dis-
tinction, that is, it is determined by the minimum distance between
samples. However, corresponding datasets are aligned in a top-
down rather than a bottom-up manner, i.e. their roots correspond to
the same diamond. Thus, a reinterpretation of super-squares in a
top-down manner would enable the alignment of datasets of differ-
ent resolutions. Since a diamond’s scale is a bottom-up characteris-
tic and its level is a top-down characteristic, this requires a method
to represent super-squares by their level rather than by their scale.

Recall that the super-square structure clusters together those dia-
monds whose coordinates agree on all but two bits, i.e. the bits cor-
responding to their diamond type τ , and that all the bits to the right
of these bits are zero. Consequently, the origin of a super-square σ
at scale s has at least s+ 2 trailing zeros in each of its coordinates,
and σ can be unscaled by shifting its coordinates to the right by
s + 2 bits. Unscaled super-square origins at a particular level are
thus a subset of the points of a regular grid.

Since the scale of a super-square is a function of the level of its
diamonds as well as the resolution of the dataset, i.e. MAXLEVEL,
a super-square based STP representation can store the unscaled co-
ordinates of the origins of its super-squares and rescale them at
runtime. Let σ be a super-square at scale s whose unscaled ori-
gin is located at point p. Then the central vertex vc of a diamond
with type τ can be calculated as: vc = p � (s + 2) + τ � s,
where� denotes a bitwise left-shift operator on each component
of its left operand. Super-squares can then be partitioned by either
their level or their scale, corresponding to top-down or bottom-up
representations, respectively.

Thus, aligning two top-down super-square based STP represen-
tations is accomplished by simply setting the maximum level of
the lower resolution dataset to that of the higher resolution dataset.
Specifically, let A and B be two terrain pyramids where dataset
A has a resolution of (2 + 1)2 and dataset B has a resolution
of (2k + 1)2, such that  < k. Then MAXLEVEL(A) is  and
MAXLEVEL(B) is k. A top-down super-square based STP rep-
resentation of dataset A can be aligned with dataset B by simply
increasing MAXLEVEL(A) to k.

An advantage of this unscaled representation is that the dataset is
no longer dependent on the resolution of the original DEM and can
be dynamically rescaled. Furthermore, this unscaled representa-
tion requires the same amount of storage as the scaled super-square
based STP representation. However, since this requires rescal-
ing the super-squares at runtime, the unscaled representation has
a slight (but constant) computational overhead to the scaled repre-
sentation.

When merging two corresponding STPs, we typically need to
insert additional vertices to maintain the transitive closure of the
resultant STP. Each of these new vertices requires an elevation as
well as an error value. For the elevation values, we recursively
interpolate the value from the two endpoints of its associated dia-
mond’s spine. This is guaranteed to terminate at the four corners
of the domain, but will typically terminate much earlier. Since we
want to ensure that the diamonds from the new dataset are reached,
we set the error of the new points to the maximum possible error.

Due to the large number of shared ancestors within the sparse

pyramid, the number of points necessary to ensure transitive clo-
sure is often quite small relative to the number of diamonds being
inserted, but depends on the location to which it is inserted. For
example, let S be an empty STP with MAXLEVEL = 30, e.g. its
equivalent FTP would have a resolution of (230 + 1)2. Adding a
2x2 block of samples to S requires only a few hundred samples to
maintain transitive closure, while adding a 10252 block of high-
est resolution samples to S has an overhead of less than 1% e.g.
whereas the 10252 block contains 1,050,625 samples, an empty
sparse pyramid of size (230 + 1)2 with this block added has fewer
than 1,060,000 diamonds. Furthermore, adding a 40972 block from
the same DEM requires fewer than 0.1% additional samples to
maintain transitive closure.

9. EXPERIMENTAL RESULTS
In this Section, we present experiments on the sparse pyramids

structure and compare our sparse representation to that of Gerst-
ner [9]. We performed our experiments on several regular datasets,
including DEMs of Mt. Marcy, the Grand Canyon, Devils Peak,
San Bernardino, two versions of the Puget Sound at different res-
olutions, and a tile of the gTopo30 covering a portion of Australia
(see Figure 2). Datasets whose dimensions are not (2k + 1)2 were
embedded into the smallest containing virtual grid of dimensions
(2k + 1)2.

A typical application of sparse pyramids is to represent multires-
olution terrains extracted from an FTP where the error ε of any di-
amond in the STP is less than some threshold approximation error.
Table 2 summarizes the sizes of sparse diamond pyramids extracted
from the dataset testbed with a range of uniform errors.

Figure 5 shows the average density (diamonds/super-square) of
the various datasets from Table 2. As can be seen from the ta-
ble, when encoding a super-square based STP of uniform error less
than one percent, there are between 5 and 12 diamonds per super-
square on average, and for errors less than 0.1 percent, the average
is between 9 − 11 diamonds for most datasets. Note also, that the
average density of super-squares increases as the error threshold
decreases.

Since the overhead per super-square is 6 bytes, our super-square
based STP representation has an overhead of less than 1 byte per
vertex when the average super-square density is greater than 6, an
approaches 0.5 bytes per vertex as the average density approaches
12. Compared to the average of 3 Bytes per vertex in [9], our
method is 3-6 times more space efficient. Furthermore, the stack-
based method of [9] does not provide random access to its vertices
and requires up to O(

√
|δ|) extra storage in memory, where |δ| is

the total number of diamonds.
Sparse terrain pyramids are suitable for representing datasets ex-

tracted from DEMs using arbitrary selective refinement criteria.
These include polygonal regions such as squares and circles (see
Figure 6) as well as polylines. Additional error functions include
distance or view dependent criteria as well as samples relevant to
specific contour lines or ranges of contour lines within the datasets.

When adding higher resolution components to a sparse pyramid,
we are effectively raising the resolution of the mesh to that of the
higher resolution component, as discussed in Section 8. We sim-
ulate a situation where a higher resolution component is available



Dataset Dims 10% Error 1% Error .1% Error 0% Error
|σ| |δ| size |σ| |δ| size |σ| |δ| size |σ| |δ| size

San Bern 128×128 222 867 4.7K 1.2K 8K 39K 1.4K 14K 63K 1.4K 16K 71 K
Devil’s Peak 165×301 275 1.5K 7.3K 2.8K 19K 89K 3.3K 32K 145K 3.3K 32K 145K

Grand Canyon 1280×640 3.5K 16K 83K 28K 172K 836K 62K 556K 2.5M 62K 556K 2.5M
Mt. Marcy 1201×1201 1.3K 6K 32K 13K 68K 340K 63K 426K 2M 101K 939K 4.2M

Puget Sound 1k 1025×1025 710 3.3K 17K 41K 219K 1.1M 82K 761K 3.4M 86K 1M 4.3M
Puget Sound 4k 4097×4097 754 3.5K 18K 75K 354K 1.8M 880K 5.5M 26M 1.2M 9.7M 44M

Australia 4800×6000 18K 99K 490K 20.1K 110K 546K 50.1K 262K 1.3M 528K 4.78M 21M

Table 2: Number of super-squares (|σ|) and diamonds (|δ|) as well as disk size(sz) in KB = 1024 Bytes or MB = 10242 Bytes) for
sparse pyramids with different uniform errors. Note that the values for Puget Sound 4k dataset for 0% error are actually for 0.03%
error rather than 0% error.
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Figure 5: Average density of super-squares (vertical axis) with uniform error (horizontal axis). Derived from Table 2 as (|δ|/|σ|).

Figure 6: Circular region of interest (ROI) from Puget Sound
1k dataset. Values inside the ROI have 0 error while those out-
side the ROI have an approximation error less than 10%. This
STP has 3600 super-squares with an average of 10.3 diamonds
per super-square.

by using the two corresponding Puget Sound datasets, whose res-
olutions are 10252 and 40972, respectively. First, we extracted a
sparse pyramid of uniform error less than 1% from the Puget Sound
1k dataset (see Figure 7(a)). This STP had 82 K super-squares and
761 K diamonds (density = 9.3), Next, we add to it a square ROI
of side length 580 pixels from the Puget Sounds 4K dataset (see
Figure 7(b)). This STP had 29 K super-squares and 341 K dia-
monds (density = 11.6). The combined sparse pyramid had 108 K
super-squares and 1.08 M diamonds (density = 9.95). The number
of shared samples between the two datasets is only 21 K or around
2% of the samples in the resultant dataset. Figure 7 illustrates a
terrain extracted from this sparse pyramid.

10. CONCLUDING REMARKS
We have introduced a compact representation for terrains en-

coded as sparse pyramids of diamonds. Our encoding of diamonds
allows the recovery of all local mesh geometry and topology from
the coordinates of the central vertex of each diamond. Furthermore,
our super-square clustering of the diamonds reduces the geometric
overhead by implicitly indexing up to 12 diamonds. Super-squares
also enable an efficient encoding of an active front of a selective
refinement query. We demonstrated the effectiveness of this clus-
tering over a wide range of datasets and error criteria and discussed
situations where a full pyramid would be more appropriate.

Compared to the sparse representation of Gerstner [9], our rep-
resentation supports random access as well as general selective re-
finement queries and does not require keeping track of an automa-
ton or stacks of height values. Finally, the overhead of our super-
square based representation is less than 1 byte per vertex compared
to 3 bytes in [9].



(a) Puget Sound 1k at 1% error. (b) Puget Sound 4k with ROI.

(c) Combination of Puget datasets

(d) Combination of Puget datasets with wireframe

Figure 7: Planar projection of (a) the Puget sound 1k dataset
with 1% error and (b) the Puget sound 4k dataset with square
ROI. (c,d) Merged datasets after upscaling the lower resolution
dataset. Shown without (c) and with (d) wireframe to highlight
the size of the mesh elements.

We are currently researching an out-of-core access structure for
the super-square based STP representation. For future work, we are
considering using super-squares to compress the height values and
approximation errors of their contained diamonds. For example,
we are considering the feasibility of adding a base elevation or er-
ror value to a super-square to enable compression of the associated
diamond values. Another compression method for the errors might
be to quantize them on a level by level basis as in [11], where error
components are quantized to 6 bits.

Additionally, for sparse pyramids that are static, we would like to
apply perfect spatial hashing [13] to super-squares to further reduce
the geometric overhead of our representation.

Another direction of future work is to generalize the super-square
clustering technique to higher dimensions. This would be benefi-
cial in modeling multiresolution volumetric and time-varying scalar
fields, or interval volumes of volumetric grids.
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