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Abstract
Nested simplicial meshes generated by the simplicial bisection decomposition proposed by Maubach [Mau95]
have been widely used in 2D and 3D as multi-resolution models of terrains and three-dimensional scalar fields,
They are an alternative to octree representation since they allow generating crack-free representations of the
underlying field. On the other hand, this method generates conforming meshes only when all simplices sharing
the bisection edge are subdivided concurrently. Thus, efficient representations have been proposed in 2D and
3D based on a clustering of the simplices sharing a common longest edge in what is called a diamond. These
representations exploit the regularity of the vertex distribution and the diamond structure to yield an implicit en-
coding of the hierarchical and geometric relationships among the triangles and tetrahedra, respectively. Here, we
analyze properties of d-dimensional diamonds to better understand the hierarchical and geometric relationships
among the simplices generated by Maubach’s bisection scheme and derive closed-form equations for the number
of vertices, simplices, parents and children of each type of diamond. We exploit these properties to yield an im-
plicit pointerless representation for d-dimensional diamonds and reduce the number of required neighbor-finding
accesses from O(d!) to O(d).

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

Mathematical and scientific computing applications are of-
ten approached using a divide-and-conquer paradigm. Ex-
amples are the analysis and visualization of two- and three-
dimensional scalar fields, where the domain of the field is
adaptively decomposed into nested cells of a simple geomet-
ric shape. This divide-and-conquer paradigm produces effec-
tive multi-resolution models of the scalar field, which allow
an efficient manipulation of the field representation by gen-
erating suitable variable-resolution representations accord-
ing to user requirements.

Subdivision strategies based on quadtrees and octrees
have been popular for regularly sampled data points inside
square or cubic domains. The drawback of these techniques
is that they introduce an exponential number of cells (of the
order d of the dimension of the domain) during each subdi-
vision. Furthermore, both quadtrees and octrees (as well as
their d-dimensional generalization, that we call a 2d-tree) are
less suitable for generating conforming (i.e. crack-free) de-

compositions since the bilinear or trilinear interpolant over
each square or cubic cell generates discontinuities on the
boundary of two adjacent cells if the cells have different
sizes. Thus, additional rules must be applied to ensure com-
patibility between neighboring cells.

In contrast, the simplicial bisection decomposition pro-
posed by Maubach [Mau95] enables the generation of more
adaptive meshes over the same domain by breaking up each
2d-tree subdivision into d steps. This method generates con-
forming meshes, and thus crack-free representations of the
underlying field, only when all simplices sharing the bisec-
tion edge are subdivided concurrently. This is typically ac-
complished through a neighbor-finding operation which cy-
cles through all such neighbors of a simplex σ and requires
O(|Neighbors(σ)|) accesses to the data structure. However,
despite the widespread use of these hierarchies, no general
analysis of the number of such neighbors in arbitrary dimen-
sions has been carried out.

Efficient representations have been proposed for multi-
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resolution models of scalar fields in 2D and 3D based on
clustering maximal simplexes (triangles or tetrahedra, in
these cases) sharing their bisection edge into a so-called dia-
mond. These representations exploit the regularity of the ver-
tex distribution, and of the subdivision rule, which produces
diamonds of certain fixed shapes, to yield an implicit encod-
ing of the hierarchical and geometric relationships among
the triangles and tetrahedra, respectively.

These subdivisions have many applications in the analysis
and visualization of scientific and medical data. They have
been applied to interactive terrain rendering [EKT01, LP02,
HDJ05] and multiresolution isosurface [GDL∗02] and inter-
val volume extraction [WD08], as well as volume segmen-
tation [KTY∗04], surface reconstruction [MVT03] and fi-
nite element analysis [Mau95, RL92]. Four-dimensional ap-
plications include multiresolution representations for time-
varying volumetric datasets [LDS04, LPD∗04], accelera-
tion structures for ray tracing [AMM07] and the analy-
sis of bivariate complex functions [WB96]. Possible higher
dimensional applications include five-dimensional weather
data [HAF∗96], fixed point computations [Mau95] and the
solution spaces of parametrized equations.

Our contribution here is a formalization of the notion of
diamonds in arbitrary dimensions and their relationship to
the simplices generated by Maubach’s bisection scheme. We
frame our discussion of diamonds in terms of a cross prod-
uct of two related simplicial decompositions of hypercubes.
Through a careful analysis of the properties of these struc-
tures, we prove that diamonds can be decomposed as a cross
product of these two structures and derive closed-form equa-
tions for the number of vertices, simplices, parents and chil-
dren of each type of diamond. Specifically, we prove that d-
dimensional diamonds contain O(d!) d-simplices, and thus,
in general, neighbor-finding on these simplicial meshes re-
quires O(d!) iterations. However, due to the regularity of
the diamond subdivision operation these simplices can be
grouped into O(d) clusters that are subdivided simultane-
ously. Consequently, while simplex-based representations
require O(d!) time to update and space to encode an ex-
tracted simplicial complex, diamond-based representations
can index O(d!) d-simplices, using only O(d) time and
space. Finally, we provide a compact pointerless represen-
tation for d-dimensional diamonds, enabling efficient repre-
sentations for subsets of a hierarchy of diamonds.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some background notions on hypercubes and
simplicial complexes and introduces the notions of cross
simplex and cross complexes. Section 3 presents a review
of related work on regular simplicial subdivisions and on
extractions of conforming representations. Section 4 dis-
cusses simplicial d-complexes generated by subdividing a
d-dimensional hypercube. We first review Kuhn’s subdivi-
sions and Maubach’s decomposition. We then introduce the
notion of fully subdivided hypercubes and prove relevant

properties. Section 5 discusses the hierarchy of simplexes,
which is a common representation for complexes generated
through Maubach’s subdivision rule and which has been in-
vestigated in arbitrary dimensions. In Section 6 we define the
hierarchy based on diamonds, that we call a hierarchy of di-
amonds in a dimension-independent way, while in Section 7,
we discuss and prove properties of diamonds related to their
geometry and to the hierarchical organization. In Section 8,
we introduce a dimension-independent representation for a
hierarchy of diamonds. In Section 9 we present an efficient
pointerless representation for conforming simplicial meshes
based on the diamond primitive and compare this represen-
tation to those based on the simplex primitive. Finally, we
draw some concluding remarks in Section 10.

2. Background Notions

In this Section, we review some background notions on hy-
percubes and on simplicial complexes and introduce some
concepts that we will use in the rest of the paper.

2.1. Hypercubes

Hypercubes, or d-cubes, are the d-dimensional analogues of
squares (2-cubes) and cubes (3-cubes). A 0-cube is a single
point, and a d-cube is created by extruding a (d− 1)-cube
one unit along a direction orthogonal to the previous (d−
1) directions (see Figure 1). Unless otherwise indicated, we
refer to axis-aligned hypercubes, where all such directions
are parallel with a coordinate axis in Rd .

Figure 1: Hypercubes: recursive definition.

Given a d-cube h, an i-face of h is any i-cube on the
boundary of h, where 0 ≤ i ≤ d. The number of i-faces of
a d-cube is given by 2d−i(d

i
)
. Of special importance are

the 0-faces, called vertices, the 1-faces, called edges and the
(d−1)-faces, called facets of h.

The diameter of a polytope p is defined as the maximum
distance between any two points on the boundary of p. For a
d-cube h, the diameter is referred to as a diagonal and is
defined by opposite vertices, i.e. a pair of vertices whose
only common face is h. Let (v1,v2) be an unordered pair of
opposite vertices. Then the edge between v1 and v2 forms a
diagonal of h and has length

√
d. Similarly, a diagonal of an

i-face of h has length
√

i.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



K. Weiss & L. De Floriani / Diamond Hierarchies

Figure 2: Diagonal of a hypercube

2.2. Simplicial complexes

A d-dimensional simplex, or d-simplex, is the convex hull
of (d + 1) affinely independent points in the n-dimensional
Euclidean space. An i-face of a d-simplex σ is the i-simplex
defined by any (i + 1) vertices of σ. The number of i-faces
of a d-simplex is thus

(d+1
i+1
)
.

A simplicial mesh Σ is a collection of simplices Σ such
that all faces of a simplex σ ∈ Σ belong to Σ, and the in-
teriors of simplices from Σ are disjoint. A simplicial mesh
is conforming if the intersection between any two simplices
σ1 and σ2 is either empty or a face belonging to the bound-
ary of both of them. A simplicial complex is a conforming
simplicial mesh.

If d is the maximum dimension of any simplex in a sim-
plicial complex Σ, then we call Σ a simplicial d-complex,
and refer to its d-simplices as cells. Further, Σ is a pure sim-
plicial complex if all of its simplices are faces of cells in Σ.
For the remainder of this paper, all simplicial complexes are
assumed to be pure.

2.3. Cross simplexes and cross complexes

We utilize the simplicial join operation [RS72,Lic99] to gen-
erate higher-dimensional simplices from a pair of affinely
independent simplices and refer to the result as a cross sim-
plex. Given an a-simplex σa and a b-simplex σb in affinely
independent subspaces, the cross simplex is the d-simplex
σ = σa⊗ σb, defined by the vertices of σa and σb, where
d = a+b+1.

For example, if σa is a 2-simplex (triangle) defined by 3
vertices and σb is a 0-simplex defined by a single vertex, then
the cross simplex σ = σa⊗σb is the 3-simplex (tetrahedron)
defined by the vertices of σa and σb (see Figure 3(a)).

Given simplicial i-complex Σi and simplicial j-complex
Σ j whose cells are pairwise affinely independent, we define
the cross complex Σd = Σi⊗Σ j as the simplicial d-complex
whose d-simplices are cross simplices of cells from Σi and
Σ j, i.e., ∀ cells σ ∈ Σd , σ = σi⊗σ j, where σi is a cell of Σi
and σ j is a cell of Σ j (see Figure 3(b)).

3. Related work

In this Section, we discuss methods related to simplicial sub-
divisions of a regular domain as well as the extraction of con-
forming simplicial complexes from these representations.

(a) Cross simplex

(b) Cross complex

Figure 3: (a) The cross simplex of a triangle (blue) and a
vertex (red) is a tetrahedron. (b) A cross complex defined by
an 8 edge complex (blue) and a one edge complex (red).

The canonical subdivision of a d-cube into d! simplices
was originally proposed by Freudenthal [Fre42] and popu-
larized by Kuhn [Kuh60] in the context of fixed points com-
putations. [Bey00] provides a comprehensive review of sim-
plicial refinement strategies.

Simplex bisection techniques subdivide each d-simplex
into two d-simplices along an edge. In 2D, Mitchell’s newest
vertex bisection [Mit92] chooses the edge opposite the most
recently introduced vertex of a triangle to bisect. An alter-
native approach [RL92] is to bisect the longest edge of each
triangle or tetrahedron. Maubach [Mau95] generalizes these
techniques to grids of arbitrary dimension, and proves that
simplex bisection, when applied to d-dimensional Kuhn-
subdivided grids, generates at most d similarity classes of
d-simplices.

Simplicial bisection admits the extraction of highly adap-
tive simplicial complexes when all d-simplices sharing the
bisection edge are bisected concurrently. When using d-
simplices as the modeling primitive, this requires an efficient
neighbor-finding algorithm to locate all such neighbors.
Symbolic neighbor-finding algorithms that run in logarith-
mic [Heb94, Mau96] or constant [EKT01, LDS04, AMM07]
time have been developed for regular grids in 2D [EKT01],
3D [Heb94], 4D [LDS04] and arbitrary dimensions [Mau96,
AMM07]. Maubach [Mau96] proves that the set of neigh-
bors can be characterized by a connected (d−2)-surface and
conjectures that this surface is simply-connected. Although
the neighbor-finding algorithm must run O(|Neighbors(σ)|)
times to bisect a simplex σ, to the best of our knowledge,
there have been no attempts to describe the number of such
neighbors of a d-simplex on a regular grid. We prove that
there are O(d!) such neighbors, and reduce the number of
required spatial accesses to O(d).
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An alternate approach is to cluster the set of d-simplices
that share a bisection edge into diamonds. Efficient encod-
ings of diamonds have been developed in 2D [LP02,HDJ05]
and 3D [GDL∗02, WD08], where the regularity of the up-
dates and vertex distribution enables an implicit encoding
of the geometric and hierarchical relationships among the
simplices. Pascucci [Pas02] generalizes the diamond subdi-
vision paradigm to general d-dimensional meshes but does
not provide a representation for such meshes or an analysis
of their properties in d dimensions. Linsen et al. [LPD∗04]
use this paradigm in the context of subdivision wavelets with
local support for 2D, 3D and 4D scalar fields. In 3D, their
adaptive structure is that of Gregorski et al. [GDL∗02].

4. Simplicial Subdivisions

In this Section, we discuss simplicial d-complexes generated
by subdividing a d-dimensional hypercube.

4.1. Kuhn Subdivisions

Assume, without loss of generality, that a unit d-cube h is
embedded in a subspace [0,1]d of Rn. Let 0d and 1d denote
a pair of opposite vertices forming a diagonal ψ = (0d ,1d)
from the lower left corner of h to its upper right corner. Also,
let e0 denote 0d and ei the i-th unit vector in Rd , e.g. e1 =
(1,0,0, . . .), e2 = (0,1,0,0, . . .).

We refer to the d-simplex with vertices

vi = ∑
j≤i

e j

as the base simplex S0. For example, when d = 3, S0 has
vertices (0,0,0), (1,0,0), (1,1,0) and (1,1,1).

Let π be a permutation of the integers {0,1, . . . ,d − 1}
and let v′ = πv indicate the application of permutation π to
the coordinates of vertex v. For example, if v = (1, 1

2 ,0) and
π = {2,0,1}, then v′ = πv = (0,1, 1

2 ). Finally, let πS denote
the application of π to each vertex of simplex S.

Then, a simplicial decomposition of h (due to Freuden-
thal [Fre42] and popularized by Kuhn [Kuh60]) into d!
cells (and their lower dimensional faces), which we de-
note as K(h), is defined by the mapping of each distinct d-
permutation π onto the vertices of the base simplex S0, i.e.,

K(h) = {π S0|π is a permutation of {0,1, . . . ,d−1}}. (1)

Since coordinate permutations do not modify 0d or 1d ,
every d-simplex in K(h) contains diagonal ψ of h. Also, the
ith vertex vi of any cell σ∈K(h) contains (d− i) coordinates
of value zero and i coordinates of value one. Thus, the edge
(0d ,vi) of σ is a diagonal of an i-face of h, and edge (vi,1d)
is a diagonal of a (d− i)-face of h.

Kuhn subdivisions can be generalized to any d-cube h′

Figure 4: Decomposition of a 3-cube into 3! = 6 simplices.

with diagonal ψ
′ = (v1,v2) by an affine mapping from the

vertices of ψ
′ to (0d ,1d).

An interesting property of Kuhn subdivisions, which will
be of use later and we prove now, is that it provides a Kuhn-
subdivision to all faces of the initial hypercube.

Theorem 4.1 Let K(h) be the simplicial decomposition of a
d-cube h, and hi an i-face of h. ThenK(hi) = hi∩K(h) is an
i-dimensional Kuhn subdivision of the domain of hi.

Proof If i = 0 then K(hi) is trivially a Kuhn subdivision.
Assume, without loss of generality, that h is a unit d-cube
with diagonal ψ = (0d ,1d). We show that the (d− 1)-faces
of h are Kuhn-subdivided. Since d was arbitrary, the proof
for the remaining i-faces follows by induction.
Consider the simplicial (d− 1)-complex Σ obtained by re-
moving vertex 1d from every simplex σ ∈ K(h). All cells of
Σ are defined by d vertices and are thus (d−1)-simplices. In
fact, since ψ was the only diagonal of h, we can decompose
Σ into d subcomplexes, each containing simplices within a
(d− 1)-dimensional axis aligned hyperplane of Rd . In the
nth such subcomplex Σn ⊂ Σ this hyperplane can be defined
by the equation xn = 0. Thus, the d vertices of a cell σ ∈ Σ j
are of the form

v′k = π(
n−1

∑
j=0

e j +
i

∑
j=n+1

e j). (2)

By projecting Σn onto the (d− 1)-dimensional subspace of
Rd that excludes coordinate xn, we obtain the (d− 1)! cells
of a Kuhn subdivided (d− 1)-cube (compare Equation 2 to
Equation 1).
Similarly, the simplicial complex defined by removing ver-
tex 0d gives us Kuhn subdivisions for the d remaining
(d − 1)-faces of h, where each hyperplane is of the form
xn = 1.

4.2. Maubach Bisection

To bisect a d-simplex σ along one of its edges e, we insert
a new vertex vm at the midpoint of e and bisect σ by the
hyperplane defined by vm and the (d− 1) vertices of σ that
are not adjacent to e (see Figure 5). This creates two new d-
simplices, covering the same domain as σ, each containing
vertex vm and one (but not both) of the endpoints of e.

c© 2009 The Author(s)
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Figure 5: Bisection of a 3-simplex along an edge e.

Maubach’s bisection scheme [Mau95] specifies the bisec-
tion edge for any cell σ in an initial simplicial d-complex Σ

or generated by repeated application of the bisection rule to
the cells of Σ. It depends only on the ordering of the vertices
of σ, and on the subdivision level `σ of σ, which is initial-
ized to zero for any cell in the original complex Σ. Given a
d-simplex

σ =(v0,v1, . . . ,vk−1, vk,vk+1, . . . ,vd),

where k = d− (`σ mod d), the bisection edge is defined by
vertices v0 and vk, and its midpoint is vm = (v0 +vk)/2. The
two cells generated by the bisection rule have vertices

σ0 =(v0,v1, . . . ,vk−1, vm,vk+1, . . . ,vd)

σ1 =(v1,v2, . . . ,vk, vm,vk+1, . . . ,vd),

and the level of these simplices is incremented, e.g.

`σ0 = `σ1 = (`σ +1).

Maubach proves that when his bisection scheme is applied
to a Kuhn-subdivided d-cube h whose simplex vertices are
ordered as in Section 4.1, the generated d-simplices belong
to at most d similarity classes [Mau95]. Recall that simplices
are similar if there is an affine mapping consisting of only
uniform scaling, reflection, rotation and translation between
them. Since coordinate permutations are rigid mappings, the
d! cells in K(h) belong to the same similarity class. Further-
more, all cells at level (` mod d) belong to the same similar-
ity class.

We denote the cells of K(h) as class-0 simplices, and in
general, a d-simplex σ as a class-i simplex if i = (`σ mod d).
Observe that the bisection edge of a class-i simplex is
aligned with the diagonal of a (d− i)-cube.

4.3. Fully Subdivided Hypercube

Consider the set of simplicial d-complexesMi(h) generated
through repeated application of Maubach’s bisection to the
cells of K(h), where i denotes the level of the d-simplices
in Mi(h) and M0(h) contains the d! cells of K(h). Since
each d-simplex in M0(h) is replaced by two d-simplices
in M1(h), M1(h) contains 2 ∗ d! cells. Md(h) thus con-
tains the 2d ∗ d! cells resulting from d such iterations, each
of which is of class-0 and is a factor of two smaller than

(a) M0(h) =K(h) (b) M1(h) (c) M2(h) = F(h)

Figure 6: Three consecutiveMi(h) simplicial complexes in
2D. (a)M0(h) is equivalent to K(h) and has 2! = 2 trian-
gles. (b)M1(h) has 4 triangles. (c)M2(h) is equivalent to
F(h) and has 4!! = 8 triangles.

those ofM0(h). We callMd(h) a Fully Subdivided Hyper-
cube, which we denote as F(h).

We simplify the notation by observing that 2d ∗d! can be
defined in terms of the double factorial function [Mes48] as

2d ∗d! = (2d)!!

where the double factorial n!! is equal to 1 if n ∈ {0,1} and
n∗ (n−2)!! otherwise. The values of (2i)!! for i = 1 . . .4 are
2, 8, 48, 384.

4.3.1. Properties of F(h)

Let h be a d-cube with midpoint vc. Let K(h) be the Kuhn
subdivision of h along diagonal ψ, and F(h) its correspond-
ing fully subdivided hypercube.

Lemma 4.1 For all cells σ ∈ F(h), vc is a vertex of σ. Fur-
thermore, the bisection edge of σ is defined by vc and one of
the 2d vertices of h.

Proof This follows from the generation of F(h) in terms
of the Maubach complexes Mi(h) starting with M0(h) =
K(h). After the first application of the bisection rule to the
cells ofM0(h), all cells σ ofM1(h) have the midpoint vc
of ψ as their dth vertex. Since none of the next d− 1 ap-
plications of the Maubach bisection scheme modify the dth

vertex, all cells ofMd(h) = F(h) contain vc.
Since all cells inF(h) are class-0, the bisection edge is deter-
mined by the first and last vertices of σ. As described above,
the last vertex of σ is vc. Since σ is a class-0 simplex, its
bisection edge must be the diagonal of a d-cube. The only
edges of F(h) that satisfy this constraint are those between
vc and a vertex of h.

Recall that for a d-cube h, K(h) contains d! class-0 sim-
plices. An alternate interpretation of F(h) is as a collection
of Kuhn-subdivided subcubes covering the domain of h and
centered at the midpoint of h.

Corollary 4.2F(h) consists of 2d Kuhn-subdivided d-cubes
covering h and with side length half that of h. Thus, each of
the 2d subcubes contributes d! cells to F(h) for a total of
2dd! = (2d)!! cells.
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Theorem 4.3 Each i-face hi of a fully subdivided d-cube
F(h) is a fully subdivided (d−1)-cube F(hi).

Proof Consider the simplicial (d− 1)-complex obtained by
removing vertex vc from each cell σ ∈ F(h). Since each j-
face h j of a Kuhn-subdivided cube is a Kuhn-subdivided j-
cube, the removal of vc from a Kuhn-subdivided subcube
within F(h) adds the (d− 1)! cells of a Kuhn-subdivided
(d−1)-cube to each of the d facets of h on which it is adja-
cent (see the proof of Theorem 4.1 for details). Since there
are 2d−1 subcubes adjacent with each facet hi of h, hi con-
tains 2d−1(d−1)! = (2(d−1))!! cells. Since these (d−1)-
simplices are from a Kuhn-subdivided (d − 1)-simplicial
complex, they are all class-0 cells of dimension d− 1. Fur-
ther, all cells of F(hi) contain the midpoint of hi coinciding
with the midpoint of the 2d−1 subcubes adjacent to hi.

Corollary 4.4 Since all i-faces of F(h) contain their mid-
point, F(h) contains ∑2d−i(d

i
)

= 3d vertices.

This enables us to define a fully subdivided d-cube as a
cross-complex of its boundary faces and vc.

Corollary 4.5 Let hi denote one of the 2 ∗ d facets of h. A
fully subdivided d-cube F(h) with midpoint vc can be de-
composed as a cross-complex of the (d−1)-simplices from
each F(hi) and the singleton simplicial complex {vc}. E.g.

F(h) = {
⋃
F(hi)⊗{vc}|hi is a facet of h}.

This provides a motivation for the double factorial notation.
Each of the 2d facets hi contributes (2(d − 1))!! cells of
F(hi)⊗vc, soF(h) contains 2d∗(2(d−1))!! = (2d)!! cells.

We are also interested in the simplicial complex defined
by the simplices on the 2 ∗ d facets hi on the boundary of
F(h), which we call a fully-subdivided i-cube boundary and
denote as BF (h). Thus, BF (h) = ∪F(hi) and is defined by
(2d)!! cells of dimension (d − 1). Each such cell corre-
sponds to a cell of F(h) where the vertex at the center of
F(h) has been removed. Figure 7 shows examples of fully
subdivided i-cube boundaries for i = 1,2,3, and highlights
the center vertex of each facet of BF (h).

4-cube (a) 1-cube4-cube (b) 2-cube4-cube (c) 3-cube

Figure 7: Fully subdivided i-cube boundary BF for (a) 1-
cube (b) 2-cube and (c) 3-cube.

5. Simplex Hierarchies

Consider a d-dimensional hypercubic domain h subdivided
according to the Kuhn subdivision rule into d! cells. A hier-
archical relationship exists between the simplices generated

by Maubach’s scheme. The two d-simplices σ1 and σ2 gen-
erated through a bisection operation on simplex σ are the
children of σ, and conversely, σ is the parent of σ1 and σ2.

We can represent this relationship as a simplex tree, a bi-
nary tree whose root is a d-simplex fromK(h). Furthermore,
the entire simplicial complex can be represented as a forest
of d! simplex trees whose roots are the class-0 cells ofK(h).
All simplices in level ` of a simplex tree are congruent, and
the class, i, of a d-simplex σ at level `σ is (`σ mod d). Fur-
ther, the bisection edge of σ is the diagonal ψ of a (d− i)-
cube whose center is the new vertex.

The fundamental operation performed in applications on
such a forest of simplex trees is the extraction of adaptive
simplicial complexes. This is the basis for a well-known op-
eration in computer graphics and scientific data visualiza-
tion, called selective refinement. Let σ be a cell (node) of a
simplex tree τ and σ1 and σ2 its children. Since σ1 and σ2
cover the same domain as σ the hierarchical relationship be-
tween cells of τ defines a nested simplicial mesh. Thus, since
K(h) is a simplicial decomposition of the domain, repeated
application of the simplex bisection operation to cells in the
forest always provides a non-overlapping simplicial decom-
position of the domain.

However, due to the local nature of the simplex bisection
rule, it does not, in general, generate valid simplicial com-
plexes. Consider the faces of a cell σ in a simplicial complex
Σ generated according to the simplex bisection rule. Since Σ

is a simplicial complex, all faces adjacent to those of σ in-
tersect only at common faces. However, after σ is bisected
along edge ψ, faces that were previously adjacent to ψ are
no longer conforming.

Thus, the bisection rule requires an additional constraint
to ensure the generation of valid simplicial complexes.
Namely, the level of all cells sharing bisection edge ψ of
a cell σ must be equal to that of σ before the bisection and
that all such cells are bisected concurrently with σ.

To satisfy this constraint, we must first find the set of
neighbors of cell σ along bisection edge ψ. The so-called
neighbor-finding operation, finds all simplices sharing (d−
1)-faces that have ψ as a common face. Neighbor find-
ing can be accomplished by storing pointers to each of the
d + 1 neighboring cells [Mau95] or symbolically by ma-
nipulating location codes that uniquely identify each cell in
the forest [Heb94, Mau96, EKT01, LDS04, AMM07]. Sym-
bolic neighbor-finding enables a pointerless representation
for cells in the forest, thus enabling each neighbor-finding
operation to be carried out in O(1) time. However, since each
neighbor must be found, this operation must be performed
O(|Neighbors(σ)|) times.

6. Hierarchy of Diamonds

We have seen that conforming updates to a simplicial com-
plex generated using Maubach’s bisection scheme are re-
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lated to the set of d-simplices surrounding a common bi-
section edge. An alternative to simplex bisection consists
of clustering d-simplices surrounding a common bisec-
tion edge into a new primitive, called a diamond [Pas02,
GDL∗02] and considering the hierarchical relationships be-
tween diamonds rather than those between simplices.

A diamond is the set of all d-simplices with a common
bisection edge, called the spine of the diamond. Since all d-
simplices within a diamond are congruent, there are d simi-
larity classes of diamonds and a diamond whose d-simplices
belong to class-i is referred to as an i-diamond. Its spine is
the diagonal of a (d− i)-cube.

A diamond δ is subdivided by bisecting all of its d-
simplices using Maubach’s bisection scheme. Thus, subdi-
vision doubles the number of cells within δ and we denote
its corresponding subdivided diamond as δs.

Let σi be an i-face of a d-simplex in diamond δ. Then,
σi is said to be on the interior of δ if all simplices σ

′ that
contain σi as an i-face belong to δ. Otherwise, σi is said to
be on the boundary of δ. An important property of the dia-
mond subdivision is that all changes occur within the inte-
rior of the subdividing diamond δ. Consequently, the faces
on the boundary of δ are unaffected by the subdivision op-
eration. The local effect of the subdivision of a diamond δ is
to (a) remove its spine (b) add a vertex vc at the midpoint of
its spine, which we refer to as its central vertex and (c) add
edges from vc to each vertex v of δ.

The hierarchical relationship between the d-simplices
generated by Maubach’s bisection scheme defines a direct
dependency relation on the diamonds. A diamond δc is a
child of a diamond δp, and conversely δp is a parent of δc, if
δc contains at least one d-simplex generated by the bisection
of a d-simplex in δp.

In contrast with the simplex hierarchy, which can be rep-
resented as a forest of binary trees, the diamond dependency
relationship can be described as a Directed Acyclic Graph
(DAG) ∆. The root of ∆ is the 0-diamond subdividing the hy-
percubic domain h (e.g. all simplices ofK(h)). The nodes of
∆ are the subdividing diamonds, e.g. the pairs (δ,δs) contain-
ing a diamond δ and its corresponding subdivided diamond
δs covering the same domain. Finally, the arcs of ∆ are de-
fined by the dependency relationship among the diamonds.

7. Properties of a hierarchy of diamonds

We now focus on the structure of an arbitrary i-diamond δ

in d-dimensions. This leads to the derivation of closed-form
equations for the number of simplices and vertices in δ as
well as the number and location of its parents and children.

Theorem 7.1 An i-diamond δ in dimension d is the cross-
complex defined by K(hk), a Kuhn subdivided (d− i)-cube,
hk, and BF (hi), a fully subdivided i-cube boundary, hi, i.e.,

δ = {K(hk)⊗BF (hi)}

such that hk and the facets of hi are in affinely independent
subspaces of Rd , and the center of hk and of hi coincide.

Proof Consider the vertices of an arbitrary d-simplex σ ∈ δ

σ =( v0,v1, . . . ,vk−1,vk︸ ︷︷ ︸
(d−i+1) vertices

, vp1 ,vp2 , . . . ,vp j , . . . ,vd︸ ︷︷ ︸
i vertices

),

where k = d− i. Since δ is defined by its spine ψ = (v0,vk),
which is the diagonal of a (d− i)-cube, the vertices in posi-
tion 0 in all d-simplices of δ are identical, and similarly for
the vertices in position k = d− i. Furthermore, the midpoint
vc = 1

2 (v0 + vk) of ψ is the central vertex of δ and is the
vertex that will be inserted in position k for all d-simplices
generated during the subdivision of δ.
Due to the use of Maubach’s bisection scheme, vertex vp1

at position (d − i + 1) of σ, where i > 0, is the center of
a (d− i + 1)-cube hp. Also, vp1 is the central vertex of the
diamond δp whose subdivision generated σ. Similarly, for
j ≤ i, the vertex vp j at position (d− i + j) of σ is the center
of a (d− i+ j)-cube and vp j is the central vertex of the level-
j ancestor diamond of δ.
The proof is split into two parts. We first show the (d −
i)-dimensional Kuhn-subdivided component of δ, K(hk),
whose vertices are in the initial (d− i + 1) positions of any
d-simplex σ ∈ δ. Next, we show the fully subdivided i-cube
boundary component, BF (hi), whose vertices are in the final
i positions of σ. Since σ is a d-simplex, all of its vertices
must be in affinely independent subspaces of Rd , and thus
σ is a cross-simplex of a (d− i)-simplex from K(hk) and an
(i−1)-simplex from BF (hi).
Kuhn component: Consider the set of d-simplices within δ

whose final i vertices are the same, i.e. if σa and σb are two
such d-simplices, then the vertex at position (k + j) of σa is
equal to the vertex at position (k + j) of σb, for 0 < j ≤ i.
Since we use Maubach’s ordering for the simplices, the sub-
space of Rd spanned by these simplices is a (d − i)-cube
hk, whose diagonal is ψ. Furthermore, since our hierarchy
began with a Kuhn subdivision of h and because of Theo-
rem 4.1, all i-faces of a Kuhn subdivided d-cube are Kuhn
subdivided, these simplices comprise a Kuhn subdivision of
hk, i.e. K(hk), and there are (d− i)! such simplices.
Fully subdivided component: This proof involves a grid that
is dual to the one we have been using (i.e. the primal grid).
A vertex of the dual grid corresponds to the center of a d-
cube of the primal grid, and, in general, a j-face of the dual
grid corresponds to a (d− j)-face of the primal grid. Observe
that the vertices of this dual grid are offset from those of the
primal grid by one half unit in each axis-aligned direction.
Recall that, on the primal grid, the vertex vp j at position (d−
i + j) of σ is the center of a (d− i + j)-cube whose center
coincides with the central vertex of a parent of δ. Then, on
the dual grid, vertex vp j of σ is the center of an (i− j)-cube,
1 ≤ j ≤ i. Note that the central vertex of δ (which is not a
vertex of δ until after it subdivides) is the center of an i-cube,
hi on the dual grid.
In the following, consider the collection of d-simplices
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within δ whose initial (d− i + 1) vertices are the same, i.e.
if σa and σb are two such d-simplices, then the vertex at po-
sition j of σa is equal to the vertex at position j of σb, for
0 ≤ j ≤ (d− i). We can thus project these d-simplices into
an (i−1)-dimensional subspace of Rd .
Our claim, which we prove through induction on i, is that
these (i− 1)-simplices decompose the boundary of a fully
subdivided i-cube hi, e.g. BF (hi). In the base case, i = 0,
and BF (hi) is empty and is therefore trivially the boundary
of a fully subdivided 0-cube.
For the inductive step, assume that in an (i−1)-diamond δp,
the final (i− 1) vertices of each simplex correspond to the
boundary of a fully-subdivided (i− 1)-cube BF (hp), whose
simplices therefore have dimension i−2. When δp is subdi-
vided, its central vertex v′ coinciding with the center of hp is
inserted. In addition, edges are created from v′ to all vertices
of δp, including the vertices ofBF (hp). This increases the di-
mension of each of BF (hp)’s simplices and generates F(hp)
(recall from Section 4.3 that F(hp) is defined as the cross-
complex of BF (hp) and the vertex at its center). All sim-
plices generated during this subdivision contain vertex v′ in
position d− i. The final i vertices of each such d-simplex de-
fines an (i−1)-simplex, and together these (i−1)-simplices
form the fully subdivided (i−1)-cube F(hp).
Now, consider the subset of these simplices that get con-
tributed to an i-diamond δc that is a child of δp. These are
characterized by having the same spine vertices (e.g. v0 and
vk). Since δc is an i-diamond its central vertex is the mid-
point of an i-cube hi in the dual grid. Among the 2∗ i facets
of hi, one is the fully subdivided (i− 1)-cube F(hp). By
symmetry, each of the other facets are subdivided similarly,
and, thus, the boundary of hi is subdivided as a fully subdi-
vided i-cube, i.e. BF (hi).

This decomposition of Theorem 7.1 suggests the follow-
ing closed-form equations for the number of d-simplices,
vertices, parents and children of any diamond δ. Let δ be an
i-diamond of dimension d,K(hk) be the (d− i)-dimensional
Kuhn-subdivided component of δ and BF (hi) be the fully
subdivided i-cube boundary component of δ.

Simplices. The number of d-simplices in an i-diamond is
(d− i)!(2i)!! This follows from the fact that δ is defined by
the cross complex ofK(hk) which contains (d− i)! cells and
BF (hi) which contains (2i)!! cells. The d-simplices of δ are
cross simplices of those from K(hk) and BF (hi). Thus the
number of neighbors required in the neighbor finding opera-
tion is O(d!).

Vertices. The number of vertices in an i-diamond is (2d−i +
3i−1). SinceK(hk) contains 2d−i vertices, and BF (hi) con-
tains 3i−1 vertices and they are both in affinely-independent
subspaces, the number of vertices in δ is just their sum.

Children. The number of children of an i-diamond is
2 ∗ (d − i) if i < (d − 1) and 2d if i = (d − 1). Due to
the Maubach subdivision, the spines of children of an i-
diamond, i < (d−1), coincide with diagonals of the 2∗(d−

i) facets of hk. When i = (d−1), hk is a 1-cube (an edge of
a cube), and hi is a (d− 1)-cube. The spine vertices of δ’s
children are located at positions 0 and d of each d-simplex,
corresponding to one of the two vertices of hk and one of the
2d−1 vertices of hi. There are thus, 2d such children.

Parents. The number of parents of an i-diamond is 2 ∗ i if
i > 0 and d if i = 0. The central vertex of each parent of an
i-diamond, i > 0, coincides with the midpoint of one of the
2∗ i facets of hi. When i = 0, hi is a 0-cube coinciding with
the central vertex of δ. Let σ denote one d-simplex of δ and
let (v0,vx) denote the spine vertices of its parents, where v0
is the vertex at position 0 of σ and vx the spine vertex of the
parent δp that generated σ. Then, since δp was a (d− 1)-
diamond, its spine was aligned with a coordinate axis of Rd ,
thus, δ has d parents. Furthermore, if ψ = (v0,vd) is the spine
of δ then let v = vd − v0 be the difference between these
vertices. The spine of the jth parent of δ is defined by v0 and
vx = v0 +v · e j (where · indicates the dot product).

8. Encoding diamonds

In this section, we generalize the diamond representation
of [WD08] to yield an efficient encoding for a d-dimensional
hierarchy of diamonds ∆ over a hypercubic regular domain
of size (2N + 1)d , where N is the maximum level of resolu-
tion LEVELMax. The vertices of diamonds in ∆ have integer
coordinates in the range [0 . . .2N ].

A diamond δ is defined by its spine ψ, or alternatively, by
the unique midpoint, vc, of its spine. Due to the regularity of
the vertex distribution as well as the updates, all geometric
and hierarchical relationships can be derived directly from
the binary representation of the coordinates (x1,x2, . . . ,xd)
of vc using efficient hardware bit shifting. Let

vc =



x1 = x1
1 x2

1 . . .xn
1 τ

1
1 τ

2
1 00 . . .0

x2 = x1
2 x2

2 . . .xn
2 τ

1
2 τ

2
2 00 . . .0

...

xd = x1
d x2

d . . .xn
d τ

1
d τ

2
d︸ ︷︷ ︸

τ

00 . . .0︸ ︷︷ ︸
γ



T

(3)

be the binary representation of the central vertex. Our encod-
ing depends on two quantities which can be extracted from
this representation: the scale γ and the type τ of δ.

Let TRAILING(xi) denote the number of trailing zeros in
the binary representation of a coordinate xi. Then, the min-
imum of the number of trailing zeros among each of the d
coordinates of vc encodes the scale γ of δ, e.g.

γ = min
i≤d

(TRAILING(xi)).

Thus, for a diamond at scale γ, the rightmost γ bits in any co-
ordinate of vc are zero, but at least one of the bits in position
τ

2 is nonzero. We define the depth of an i-diamond δ in terms
of the scale as DEPTHδ = LEVELMax−γ. A diamond’s depth
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4-cube

d=1

d=2

d=3

d=4

i=0 i=1 i=2 i=3

Figure 8: An i-diamond δ in dimension d is the cross-complex of K(hk), a Kuhn subdivided (d− i)-cube, hk (top cube in each
cell) and BF (hi), the boundary of a fully subdivided i-cube, hi (bottom cube in each cell). For i < d− 1, the central vertices
of children of δ are located at the midpoints of each (d− i− 1)-face of hk (blue vertices). For i > 0, the central vertices of
parents of δ are located at the midpoints of each (i−1)-face of hi (red vertices). An example of i = 2 and d = 3 is illustrated in
Figure 3(b).
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corresponds to the number of i-diamond ancestors it has in
the DAG on a path from the root to δ. The level `σ of a cell
σ in an i-diamond δ is thus DEPTHδ ∗d + i.

The two bits at position γ + 1 and γ + 2 of each coor-
dinate xi, which we denote as τ

2
i and τ

1
i , respectively en-

code the type τ of δ. The class of δ is encoded within the
bits τ

2 of τ as the number of zeros, e.g. d −∑τ
2
i . The fi-

nal n = LEVELMax− (γ+2) bits in each dimension are only
used in this representation to distinguish between diamonds.

The oriented direction of δ’s spine can be extracted from
τ using the following encoding. First, initialize the sign vari-
able s to +1. Component ui of the direction vector ~u is then:

ui =


1, if τ

1
i = 0 and τ

2
i = 1

−1, if τ
1
i = 1 and τ

2
i = 1

0, if τ
1
i = 0 and τ

2
i = 0

0, if τ
1
i = 1 and τ

2
i = 0.

In the fourth case, where τ
1
i = 1 and τ

2
i = 0, we must also

multiply the sign s by−1. The orientation of spine ψ is then
s∗~u.

The geometric and hierarchical components of δ can be
computed as scaled offsets from vc. The unscaled offsets are
d-vectors ~f such that fi ∈ {−1,0,1}. Thus, a component of
diamond δ, at scale γ, whose center is p and whose offset
from vc is ~f can be computed as:

p = vc +2γ ∗ ~f . (4)

We now discuss the offset vectors to the elements of an
i-diamond δ at scale γ.

Kuhn-subdivided component. Since the class i of δ is en-
coded in the number of zeros in the rightmost bits of τ, the
subspace of Rd spanned by the Kuhn subdivided (d − i)-
cube K(hk) are those defined by the (d− i) coordinates of
τ

2
i with value 1.

Specifically, δ’s spine ψ = (v0,vk) can be calculated us-
ing the oriented spine direction ~u, where v0 has offset vec-
tor ~f = −~u and vk has offset vector ~f = ~u. Their coordi-
nates can be obtained by plugging ~f into Equation 4. The
remaining vertices and cells can be found through an affine
mapping to the canonical subdivision of Section 4.1, or,
if d is reasonably small, through precomputed lookup ta-
bles [GDL∗02, WD08].

Since the 2(d− i) children of δ are located at the facets
of hk (for i < (d−1)), offsets to their central vertices can be
computed as ~f =±e j, in all coordinates that τ

2
j = 1. For i =

(d−1), the 2d children are at offsets ~f = (±1,±1, . . . ,±1),
and at scale γ+1.

Fully-subdivided component. The i-dimensional subspace
spanned by BF (hi) is along the coordinates in which τ

2
j = 0.

Similarly, for i > 0, offsets to the parents of δ are ~f =±e j , in
all coordinates that τ

2
j = 0. For i = 0, we can use the oriented

spine direction to find vertices v0 and vd of the spine. Then,
as in Section 7, v = vd − v0 and the d parents are located at
offset ~f =−u+v · e j.

Since the vertices and d-simplices of BF (hi) are defined
along all directions spanned by hi, they can be found by in-
crementally traversing in a direction within hi orthogonal to
the directions that have already been traversed. That is, since
the ancestor of a diamond at the center of an i-cube ofBF (hi)
is the center of one of its facets, the traversal is only along a
single dimension.

Figure 8 illustrates the components of all diamond classes
up to dimension d = 4. Each cell corresponds to a diamond
δ of class i (columns) in dimension d (rows). The top hy-
percube in each cell is a Kuhn subdivided (d− i)-cube con-
taining the oriented spine, whose vertices are colored black
and gray, respectively, and the children, whose central ver-
tices (blue) are located at the center of its facets, at an offset
~f = ±e j, in all coordinates that τ

2
j = 1. The bottom hyper-

cube in each cell is the boundary of a fully subdivided i-cube.
The central vertices of the parents (red) of δ are located at the
center of its facets at offset ~f = ±e j, in all coordinates that
τ

2
j = 0. The two hypercubes intersect at their midpoints.

9. Encoding simplicial complexes

The encoding presented in Section 8 leads to an efficient
pointerless representation for a simplicial complex Σ ex-
tracted from a hierarchy of diamonds. Σ can be encoded as
a collection of diamonds, each of which contains a set of
d-simplices, such that, the collection of simplices from all
diamonds in Σ forms a simplicial complex covering the do-
main h. Since we can reconstruct the location of all vertices,
simplices, parents and children of a diamond δ from the co-
ordinates of its central vertex, each diamond can be entirely
indexed by the d coordinates of its central vertex.

In general, not all d-simplices of a diamond will belong
to the complex Σ, and thus each diamond δ requires some
bookkeeping to track the set of its d-simplices belonging to
the complex Σ. We observe that each d-simplex in a diamond
δ was created during the subdivision of a single parent of δ.
Since an i-diamond, i > 0, has (d− i)!(2i)!! simplices and
only 2i parents, we observe that these d-simplices are con-
tributed to δ in clusters of size (d− i)!(2(i−1))!!. Similarly,
the d! d-simplices of a 0-diamond arrive in clusters of size
(d−1)! from each of its d parents. Thus, a single bit is suffi-
cient to track each cluster of d-simplices within δ, and, con-
sequently, 2 ∗ d bits are sufficient to track all (d− i)!(2i)!!
d-simplices of diamond δ ∈ Σ.

Recall that the bisection rule for d-simplices requires that
all bisection-edge neighbors are present in the mesh. The
corresponding condition for conforming updates to a dia-
mond δ is for δ to contain all of its d-simplices. This oc-
curs when all parents of δ have subdivided. Thus, the O(d)
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bookkeeping bits of a diamond can also be used to cache the
subdivision status of each parent of δ.

As a consequence, the cost of encoding diamonds in a
diamond-based simplicial complex scales linearly with re-
spect to the dimension, even though the number of sim-
plices scales factorially with respect to the dimension. A
simple encoding for diamond-based simplicial complexes of
LEVELMax = N thus requires d ∗N bits to encode the central
vertex and d ∗2 bookkeeping bits to encode the contained d-
simplices of each diamond containing at least one d-simplex
in Σ.

In contrast, pointerless encodings for simplex-based sim-
plicial complexes extracted from a forest of simplices typi-
cally use locations code to index the encoded simplices. The
location code for a simplex σ requires (a) an encoding of
the σ’s root tree, requiring O(log(d!)) bits, (b) the level `σ

of σ, requiring dlog(d ∗N)e bits, and (c) a sequence of bits
corresponding to the tree traversal, requiring `σ = O(d ∗N)
bits. However, in existing schemes, additional information
is required for efficient (i.e. constant time) neighbor finding.
In [LDS04], an additional neighbor mask is required to ef-
ficiently ascertain the appropriate bisection-edge neighbors,
and in [AMM07] a reflection vector (consisting of an addi-
tional d bits) is required. Finally, since there are no O(1)
conversions between location codes and the coordinates of a
simplex σ’s vertices, the d + 1 vertices of each simplex can
be encoded along with the location code, or can be deter-
mined by traversing the tree from the root (requiring O(`σ)
time).

Besides the storage savings achieved by diamond-based
encodings, the simplex-based encodings cannot efficiently
cache the status of its subdivided neighbors, and thus each
simplex bisection necessarily requires O(d!) iterations of the
neighbor-finding operation followed by O(d!) simplex bi-
sections.

We now compare the storage requirements of the two rep-
resentations in the concrete case of d = 3, where i-diamonds
can have 6,4 and 8 tetrahedra, for i = 0, 1 and 2, respectively.
Table 1 compares the number of diamonds |δ| to the num-
ber tetrahedra |σ| in meshes extracted from several volumet-
ric datasets. The spheres dataset is an artificially gener-
ated distance field for 15 randomly placed spheres. All other
datasets were downloaded from the VolVis database. In all
cases, diamonds containing a specific isovalue were forced
to subdivide while those not containing the isovalue were
not. Across all tested datasets, the average number of tetra-
hedra per diamond was 3.75.

For the storage requirements, we assume that
LEVELMax ≤ 10, and thus, coordinates can be encoded
using 2 bytes, and location codes using 30 bits (4 bytes). For
the comparison of storage costs, we assume that diamonds
require 7 bytes each: 6 bytes for the coordinates of the
central vertex and 1 byte for the bookkeeping; and that
simplices require 6 bytes each: 4 bytes for the location code,

one byte for the combined level and tree root encodings,
and an additional byte for efficient neighbor-finding (as
discussed above). This encoding does not include storage
space for the 4 vertices of each simplex (containing 3
coordinates each), and thus their coordinates must be recon-
structed e.g. using a top-down tree traversal. Although these
meshes are only in 3D, (where 3! = 6), the diamond-based
encoding is around 3 times more compact than a simplified
simplex-based encoding. Since the storage requirements
scale with the dimension d, these advantage increase as the
dimension d increases.

10. Concluding Remarks

We have generalized the notion of diamond to arbitrary di-
mensions as cross-complexes of two related simplicial de-
compositions of lower-dimensional hypercubes.

This has enabled us to analyze the properties of diamonds
and to derive closed-form equations for the number of d-
simplices, vertices, parents and children of all types of dia-
monds in arbitrary dimensions.

In particular, we proved that an i-diamond in d-
dimensions contains (d − i)!(2i)!! d-simplices. Thus, rep-
resentations in which the primitives are d-simplices become
very expensive to store as the dimension d of the problem
domain increases. Specifically, since neighbor-finding op-
erations are required for extracting conforming meshes be-
fore any bisection operation, extracting conforming modi-
fications to a simplicial complex is a problem with O(d!)
complexity.

In contrast, from the perspective of diamonds, we see that
the d-simplices within an i-diamond are generated in clusters
of size (d− i)!(2(i−1))!! during the subdivision of each of
the parents of the diamond. Thus, in applications that require
the extraction of simplicial complexes, a diamond-based en-
coding requires only O(d) spatial accesses to ensure con-
forming updates to the complex.

We have proposed an implicit pointerless encoding from
which all geometric and hierarchical relationships within the
hierarchy can be derived using only the d coordinates of a
diamond’s central vertex. Such representation requires O(d)
bytes per diamond. Compared to simplex trees that require
O(d) bytes per d-simplex, but must represent O(d!) such d-
simplices, our diamond-based representation is significantly
more compact.

We note, however, that while the diamond representation
can reduce the number of spatial accesses from O(d!) to
O(d) during the generation of adaptive domain decompo-
sitions, diamonds still contain a number of vertices which
varies exponentially with the dimension of the diamond.
Thus, we envision the diamond approach to yield the greatest
benefit when applied to low-dimensional problem domains
of dimension greater than three.
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Dataset LEVELMax
Number of elements Storage costs (MB)
|δ| |σ| |σ|/|δ| Σδ Σσ Σσ/Σδ

Spheres 7 316 K 1.18 M 3.73 2.11 6.76 3.20 x
Spheres 8 1.07 M 3.99 M 3.72 7.16 22.8 3.19 x

Fuel 6 23.1 K 87.5 K 3.78 .15 .50 3.24 x
Hydrogen 7 93.0 K 357 K 3.83 .62 2.04 3.29 x

Tooth 8 281 K 1.05 M 3.74 1.88 6.01 3.20 x
Engine 8 1.40 M 5.30 M 3.78 9.36 30.3 3.24 x
Bonsai 8 1.94 M 7.57 M 3.89 12.98 43.3 3.34 x

Table 1: Comparison between the number of tetrahedra (σ) and diamonds (δ) in simplicial complexes extracted from the
hierarchy of diamonds and forest of simplices representations. For the storage comparison, diamonds in Σδ are encoded using
7 bytes and simplices in Σσ are encoded using 6 bytes. Storage costs are listed in megabytes, where 1MB = 10242 Bytes.
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