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Abstract— Volumetric datasets are often modeled using a multiresolution approach based on a nested decomposition of the do-
main into a polyhedral mesh. Nested tetrahedral meshes generated through the longest edge bisection rule are commonly used
to decompose regular volumetric datasets since they produce highly adaptive crack-free representations. Efficient representations
for such models have been achieved by clustering the set of tetrahedra sharing a common longest edge into a structure called a
diamond. The alignment and orientation of the longest edge can be used to implicitly determine the geometry of a diamond and its
relations to the other diamonds within the hierarchy. We introduce the supercube as a high-level primitive within such meshes that
encompasses all unique types of diamonds. A supercube is a coherent set of edges corresponding to three consecutive levels of sub-
division. Diamonds are uniquely characterized by the longest edge of the tetrahedra forming them and are clustered in supercubes
through the association of the longest edge of a diamond with a unique edge in a supercube. Supercubes are thus a compact and
highly efficient means of associating information with a subset of the vertices, edges and tetrahedra of the meshes generated through
longest edge bisection. We demonstrate the effectiveness of the supercube representation when encoding multiresolution diamond
hierarchies built on a subset of the points of a regular grid. We also show how supercubes can be used to efficiently extract meshes
from diamond hierarchies and to reduce the storage requirements of such variable-resolution meshes.

Index Terms—Longest edge bisection, diamonds, hierarchy of diamonds, multiresolution models, selective refinement.

1 INTRODUCTION

Discrete volumetric datasets are often modeled as polyhedral meshes
where scalar values are associated with the vertices of the mesh. Due
to the increasing sizes of volumetric datasets, a multiresolution model
is often used, thus creating a hierarchical spatial decomposition on the
vertices of the mesh. Decompositions based on nested cubes, known
as octrees, are popular for modeling 3D scalar fields as they allow one
to focus resources on regions of interest within the dataset, while ag-
gregating the less relevant regions into larger blocks. However, an oc-
tree partitioning may introduce cracks into the scalar field representa-
tion. Additionally, variable-resolution representations extracted from
octrees have limited adaptability in that each cubic block is replaced
with eight new cubes. Longest edge bisection (LEB) hierarchies were
introduced as a multiresolution modeling scheme over regular grids to
increase adaptability while enforcing crack-free, or conforming, modi-
fications to the model. However, this adaptability increases the number
of modeling primitives at full resolution where each cube is replaced
by six tetrahedra. This problem is mitigated by aggregating the set
of tetrahedra involved in each modification to the mesh into a model-
ing primitive called a diamond. The regularity of the decomposition
and the structure of the mesh enables implicit encodings for both the
hierarchical and geometric relationships among the diamonds in the
hierarchy.

Here, we propose the supercube, a high-level primitive for the edges
of an LEB hierarchy. A supercube is a structured set of edges within
an LEB hierarchy that captures the intrinsic symmetry of the model.
Whereas previous representations contain several congruence classes
of tetrahedra or diamonds, each with different geometric alignments,
supercubes are all identical (up to scale). Diamonds and supercubes
are related by a one-to-one correspondence from the longest edge of
a diamond to a supercube edge. Thus, the set of edges in a supercube
corresponds to all distinct types of diamonds within the hierarchy.

• K. Weiss is with the Department of Computer Science, University of
Maryland, College Park, 4406 A.V. Williams Building, College Park, MD
20742. E-mail: kweiss@cs.umd.edu.

• L. De Floriani is with the Dipartimento di Informatica e Scienze
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Many operations on LEB hierarchies apply to only a sparse subset
of the tetrahedra within the hierarchy. For example, in isosurfacing
applications, we are only interested in the subset of tetrahedra that
intersect the isosurface. Similarly, large regions of a domain are of-
ten oversampled due to the use of a regularly sampled representation.
However, implementations of these LEB hierarchies have mostly fo-
cused on efficient representations for the entire hierarchy, where the
tetrahedra are implicitly indexed. We propose the use of supercubes
as containers for data associated with coherent subsets of the elements
within an LEB hierarchy. Since this clustering incurs overhead re-
lated to the storage of explicit spatial indexes, we consider the number
of encoded diamonds with respect to an encoding of the full hierar-
chy, as well as the number of elements associated with each cluster.
We demonstrate the effectiveness of supercubes as a multiresolution
model for complete, or sparse volume datasets.

The remainder of this paper is organized as follows. We review re-
lated work and the longest edge bisection model in Sections 2 and 3,
respectively. In Section 4, we introduce the supercube primitive,
while, in Section 5, we discuss efficient encodings for supercubes. In
Section 6, we discuss an application of supercubes to the encoding
of multiresolution models of 3D scalar fields, while in Section 7 we
discuss an efficient encoding of the mesh extracted though selective
refinement. We present experimental results in Section 8. Finally, we
draw some concluding remarks in Section 9.

2 RELATED WORK

Multiresolution tetrahedral models for 3D scalar fields based on
longest edge bisection (LEB) were introduced for domain decompo-
sition in finite element analysis [10, 17, 22], and have been applied
in several contexts, including scientific visualization [31, 23, 6, 8, 16,
25], surface reconstruction [18] and volume segmentation [12].

The containment hierarchy among the tetrahedra in an LEB mesh
induces a natural tree representation, in which the nodes are tetrahedra
and the two children of a tetrahedron t are the tetrahedra generated
by bisecting t. If the tree is encoded using an array, the parents and
children of a tetrahedron can be implicitly determined by their array
indices. This representation is used in [31, 7, 6, 13, 8, 16].

LEB meshes can be non-conforming and, thus, can generate iso-
surfaces with cracks. This problem can be avoided by simultaneously
subdividing all tetrahedra sharing that edge. This can be performed
through neighbor finding algorithms [10, 17, 13] or through a precom-
puted saturated error which implicitly forces all longest edge neigh-
bors to split [7, 6].



An alternative approach is to directly encode the cluster of tetrahe-
dra sharing a longest edge [2, 8, 9, 26, 28]. Gregorski et al. [8] denote
such a primitive as a diamond, and propose an implicit representa-
tion for the spatial and hierarchical relationships of a diamond based
on its level, orientation and position. In our implicit diamond repre-
sentation, the level and orientation can also be derived from the posi-
tion of the diamond. The diamond paradigm has been generalized to
higher dimensions in connection with adaptive mesh generation [19].
A decomposition of an arbitrary dimensional diamond into a pair of
axis-aligned hypercubes is introduced in [28] to yield an implicit rep-
resentation for diamond-based LEB hierarchies over regular grids.

All the above methods exploit the regularity of the data distribu-
tion by encoding the multiresolution model as a regular grid where
all vertices are present. They are thus only efficient for representing a
complete LEB hierarchy of dimensions (2N +1)3. However, many op-
erations on LEB hierarchies pertain to only a subset of the tetrahedra.
To the best of our knowledge, methods to encode an incomplete LEB
hierarchy have only been proposed in 2D for terrain modeling [5, 27].
The former representation [5] uses variable-length pointers to encode
the number of containment hierarchy nodes that are skipped when a
node is not refined. The latter representation [27] uses a similar clus-
tering strategy to the one presented in this paper for encoding an in-
complete hierarchy of 2D diamonds at multiple resolutions.

There have been many proposed optimizations to enable interac-
tive visualization of LEB hierarchies including frame-to-frame co-
herence [3, 8], parallel rendering [7], front-to-back sorting, view-
dependent rendering [16], tetrahedral stripping [20], and chunked up-
dates [9, 1]. Since our model is based on the same hierarchies, these
optimizations can be easily incorporated into our pipeline.

Octrees are another popular family of spatial data structures used
in visualization [29, 4, 21, 11, 24]. The subdivision rule for an octree
node n with side length ` is to replace n by its 8 children, each with side
length `/2. Since LEB hierarchies extract conforming meshes, they
are more closely related to restricted octrees [29, 24] where neighbor-
ing nodes can differ by at most one level of resolution.

3 LONGEST EDGE BISECTION AND DIAMOND HIERARCHIES

In this Section, we review hierarchical spatial decompositions of the
domain of a 3D scalar field based on the longest edge bisection opera-
tion applied to a tetrahedral mesh partitioning the domain.

A mesh in which all cells are defined by the uniform subdivision
of a cell into scaled copies is called a nested mesh. A special class
of nested meshes are those generated by bisecting tetrahedra along
their longest edge, which we denote as Longest Edge Bisection (LEB)
meshes. The bisection rule for a tetrahedron t in such a mesh consists
of replacing t with the two tetrahedra obtained by splitting t along the
plane defined by the middle point of its longest edge e and the two
vertices of t not adjacent to e. When this rule is applied recursively to
an initial decomposition of a cubic domain Ω into six tetrahedra shar-
ing a diagonal of Ω, it generates three congruent classes of tetrahedra,
each with a single longest edge. We denote the tetrahedra congruent to
those sharing a diagonal of the base cube as 0-tetrahedra. Tetrahedra
congruent to those obtained by splitting a 0-tetrahedron are denoted as
1-tetrahedra and have a longest edge aligned with a face diagonal of
the base cube. Finally, 2-tetrahedra have a longest edge aligned with
an edge of the base cube and are congruent to those obtained by split-
ting a 1-tetrahedron. Tetrahedra obtained by splitting a 2-tetrahedron
are congruent to 0-tetrahedra.

Applying the longest edge bisection rule to tetrahedra does not gen-
erate conforming meshes. Thus, we consider a clustering of the tetra-
hedra that need to be subdivided concurrently. Given an LEB mesh Σ,
the set of tetrahedra sharing a common longest edge forms a diamond,
which we denote as δ . The longest edge of δ is called its spine. Since
all tetrahedra within a diamond share their spine, they all belong to the
same class of tetrahedra. As a consequence, there are three congru-
ence classes of diamonds: those with spines aligned with diagonals
of an axis-aligned cube (0-diamonds), with face diagonals of such a
cube (1-diamonds) or with edges of such a cube (2-diamonds). An
i-diamond, for i ∈ {0,1,2} is formed by {6,4,8} tetrahedra, and con-

tains {8,6,10} vertices, respectively. Figure 1 illustrates the three dia-
mond classes and highlights their spines (black edges), parents (hollow
gray vertices) and children (red vertices).
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Fig. 1. The three classes of diamonds, distinguished by the alignment of
their spines (black edges). Central vertices of children coincide with the
midpoint of a subset of the diamond’s edges (red vertices), while those
of parents coincide with a subset of its vertices (hollow gray vertices).

A diamond δ is subdivided by bisecting all of its tetrahedra accord-
ing to the longest edge bisection rule, thus doubling the number of
tetrahedra within δ . We note that all changes to the LEB mesh Σ due
to the subdivision of a diamond δ occur within the interior of the do-
main of δ and, thus, the vertices, edges and faces on the boundary of
δ are unaffected by its subdivision. The local effect of such a sub-
division is to remove its spine, to add a vertex at the midpoint of its
spine, which we denote as the central vertex of the diamond, and to
add edges from the central vertex to all other vertices of δ .

Let us consider the collection ∆ of all the diamonds associated with
the longest edges of the tetrahedra T arising from longest edge bi-
section to a cubic domain Ω. The containment relation between the
tetrahedra in T induces a parent-child dependency relation over the di-
amonds in ∆. A diamond δp is a parent of another diamond δc if and
only if some tetrahedra in δc are created by the splitting of at least one
tetrahedron in δp. If δp is a parent of δc, then δc is called a child of δp.

The set ∆ with the parent-child dependency relation defined over ∆

can be easily shown to define a partial order relation and thus it can
be described as a Directed Acyclic Graph (DAG) (see [2] for a proof),
whose nodes correspond to diamonds, and whose arcs are defined by
the parent-child dependency relation between diamonds. We call the
resulting model a Hierarchy of Diamonds (HD). Due to the regularity
of the vertex distribution and the subdivision rule, the DAG associated
with ∆ has a fixed structure. Thus, with the exception of diamonds
whose spines lie on the domain boundary, {0,1,2} diamonds always
have {3,2,4} parents and {6,4,8} children, respectively.

4 SUPERCUBES

Since we employ longest edge bisection as the subdivision operation,
and diamonds are defined by their spine, it is useful to consider the
spatial and hierarchical relationships among the edges of an LEB hier-
archy. An analysis of this structure reveals a higher level of symmetry
within the hierarchy than that which is apparent at the level of dia-
monds (see Figure 3). Specifically, each level of resolution is tiled by
a repeating pattern of edges arranged in a cubic domain, which we call
a supercube.

Supercubes can be defined constructively by their set of edges. If
we consider an empty cubic domain, the edges of a supercube σ are
formed by

• the edges joining the center of the cube to its eight corners (see
Figure 2a),

• the edges joining the center of each of the six faces of the cube to
each of the four face corners and to the center of the cube (adding
thirty additional edges, see Figure 2b), and

• the edges joining the midpoint of each of the twelve edges of the
cube to the two closest cube corners, the two closest face centers
and to the cube’s center (adding 60 additional edges, see Figure 2c).



(a) (b) (c)

Fig. 2. The edges of a supercube σ . (a) Eight edges originating from
the center of σ (b) Six groups of five edges originating from face centers
of σ (c) Twelve groups of five edges originating from the side centers of
σ . The black edges in (a) and (b) are shown only for context.

To ensure that each edge in an LEB hierarchy is only associated
with a single supercube, we adopt the common convention used for
octrees [24] that a supercube uses half-open intervals, i.e. it contains
all internal edges as well as the edges on its lower boundaries but not
the edges on its upper boundaries. Thus, we consider any edge of a
supercube σ whose endpoints are both on an upper boundary of σ

to belong to a neighboring supercube. Of the 98 edges introduced
above, a supercube only contains the 56 edges that satisfy the half-
open criteria and consists of: 8 cube diagonals, 24 face diagonals and
24 cube edges. This is illustrated (in 2D) in Figure 3 at three consec-
utive levels of resolution, where the solid lines are supercube edges,
while the dashed lines on the upper boundaries indicate edges belong-
ing to neighboring supercubes due to the half-open interval rule.

(a) Level ` (b) Level `+1 (c) Level `+2

Fig. 3. Supercubes (in 2D) are structured sets of edges tiling each level
of resolution within an LEB hierarchy. Three consecutive levels of res-
olution covering the same domain are shown, containing 1, 4 and 16
supercubes, respectively. Dashed edges are excluded due to the half-
open interval rule.

The one-to-one correspondence between edges of an LEB hierar-
chy and the spines of diamonds provides a unique association from
each diamond to a single supercube. This correspondence enables the
use of supercubes to associate information with a coherent subset of
the diamonds while minimizing the geometric overhead required to
access this information. This is facilitated by an efficient encoding for
supercubes, as described in the following Section.

5 ENCODING SUPERCUBES

In this Section, we discuss an encoding for supercubes within a hier-
archy of diamonds ∆ built on a grid with (2N +1)3 points. We assume
that all vertices of the diamonds in ∆ have integer coordinates in the
range of [0..2N ].

5.1 Encoding diamonds

Due to the one-to-one correspondence between diamonds and grid
points, a diamond δ ∈ ∆ can be uniquely indexed by its central ver-
tex. We consider the binary representation of the coordinates vx, vy

and vz of central vertex vc as

vc =


vx = x1x2 . . .xm dx1 dx2 00 . . .0
vy = y1y2 . . .ym dy1 dy2 00 . . .0
vz = z1z2 . . .zm︸ ︷︷ ︸

σ

dz1 dz2︸ ︷︷ ︸
τ

00 . . .0︸ ︷︷ ︸
γ

 (1)

The scale γ of a diamond δ is the minimum of the number of trailing
zeros among its three coordinates. Thus, in any diamond δ at scale γ ,
the rightmost γ bits in each of vx, vy and vz are zero, but at least one
of the bits at position γ +1 (i.e. dx2 , dy2 or dz2 in Equation (1)) is non-
zero. The level of a diamond δ at scale γ is ` = N− γ , and equals the
number of i-diamond ancestors of δ in the DAG, i.e. its depth in the
DAG modulo 3.

The two bits at positions γ + 1 and γ + 2 in each coordinate of vc
encode the diamond type τ . Since the type τ is encoded using 2 bits
in each dimension, there are 43 = 64 possible values for τ . However,
the definition of γ precludes the eight cases where dx2 , dy2 and dz2 are
all zero. Thus, there are 56 valid diamond types, each corresponding
to a distinct supercube edge. Finally, the number i of zeros at position
γ +1 of vc encodes the congruence class of δ .

The final m = N − (γ + 2) bits in each of the coordinates encode
the origin of the supercube σ containing δ , i.e., its lower-left corner.
Since there are no restrictions on the values of these bits, the origins
of supercubes at a fixed level of resolution ` = m + 2 are points on a
regular 3D grid that have been scaled by a factor of 2γ+2. Note that
scale, type and supercube origin can be efficiently extracted from the
binary representation of the central vertex of a diamond through bit
shifting operations. Supercubes contain all unique types of diamonds
within an LEB hierarchy, since the type τ of a diamond δ is deter-
mined by the supercube edge with which its spine coincides. Thus, a
diamond’s type τ encodes the scaled offset of its central vertex from
the supercube origin. i.e. vc = σ + (τ � γ), where ‘�’ indicates a
component-wise bit shift operation (see Figure 4).

00
00

01

10

11

01 10 11

(a) Supercube diamonds

00

10

11

(b) Diamond as offset

Fig. 4. (a) A diamond’s spine coincides with an edge (solid lines) of a
single supercube. (b) Alternatively, a diamond’s central vertex lies at the
midpoint of a supercube edge.

5.2 Internal map of a supercube
Since supercubes are intended to efficiently encode information with
a subset of the diamonds of an LEB hierarchy, they require some form
of bookkeeping to index the encoded diamonds.

A simple approach would be to encode this data as an array with
one entry for each of the 56 possible diamonds in the supercube. The
data associated with each diamond is then indexed by its type τ , and
unencoded diamonds are marked in place as missing. However, this
can waste a considerable amount of storage for supercubes with many
unencoded diamonds.

A more efficient approach for static representations is to index the
encoded diamonds using a bitflag of 56 bits (i.e. 7 bytes) along with
a corresponding array with storage only for the encoded diamonds.
The data associated with a diamond of type τ is indexed in the array
by the prefix sum of τ in the bitflag. Since prefix sum computations



can be performed efficiently in hardware, the processing overhead of
this representation compared to that of the simpler encoding above is
negligible. Each supercube in this representation incurs a fixed storage
overhead, regardless of the number of diamonds encoded. Thus, the
overhead of this representation is reduced as the average concentration
of encoded diamonds per supercube increases.

Since this bitflag representation requires a reorganization of the ar-
ray data every time a diamond is added or removed, we use the array
representation during the initial generation of the data, and convert to
the bitflag representation immediately thereafter.

5.3 Encoding collections of supercubes
We observe that within a given level of resolution `, supercubes can be
uniquely indexed by their origin. However, supercubes from different
levels can map to the same origin (see Figure 3).

We propose a two step access structure, where supercubes are first
indexed by their level of resolution, and then by their origin. This also
enables the level ` of a supercube to be implicitly encoded within the
access structure.

The encoded supercubes at a given level of resolution ` belong to a
uniform grid that has been scaled by a factor of 2γ+2. Thus, depending
on the data distribution, we have several options for access structures
to the supercubes. When the majority of the data within a given level
is present, the supercubes can be indexed using a full array. However,
most of the time, this will not be the case. An MX-Octree [24] is
a hierarchical spatial access structure defined on grids where data is
only associated with the leaf nodes of the complete tree, and adjacent
unencoded elements can be aggregated to reduce the wasted space.
The advantage of such a structure for supercubes is that the higher
levels of resolution contain fewer elements, and enable quicker access.
A third option is to organize the supercubes in a hash table to provide
O(1) access.

Thus, the data associated with a diamond δ with supercube origin
σ , type τ and scale γ can be accessed in three steps. First, the set of
supercubes at level ` = N − (γ + 2) is located. Next, the supercube
σ within this set is found. Finally, the data at location τ within σ is
found using the internal map of σ .

5.4 Extension to higher dimensions
A closer inspection of Equation (1) reveals that supercubes can be de-
fined in a dimension-independent manner. Thus, the binary represen-
tation of the central vertex provides all information for retrieving ge-
ometric and hierarchical information as in the 3D case. Consider a
regular grid in a d-dimensional cubic domain with (2N +1)d vertices.
With the exception of the 2d vertices at the domain corners, each ver-
tex corresponds to the central vertex of a d-dimensional diamond.

The type τ of a diamond δ at scale γ is thus encoded by the two bits
at positions γ + 1 and γ + 2 in the binary representation of the central
vertex of δ . There are four possible values for each of the d com-
ponents of τ , and thus, 4d possibilities for τ . The values at position
γ + 2 are unrestricted, but the definition of diamond scale invalidates
any case where all the bits at position γ + 1 are zero. Since there are
2d such cases, there are (4d−2d) valid d-dimensional diamond types.

Similarly, since the class of a diamond is encoded within the dia-
mond type τ by the number of zeros in the lower bit of each compo-
nent, we can determine the number of distinct diamond types in each
class in d dimensions. Since there are

(d
i
)

combinations of i zeros in
the d lower bits, and 2d arrangements in the upper bits of τ , there are
2d(d

i
)

distinct types of i-diamonds in dimension d, for 0≤ i < d.

6 DIAMOND-BASED MULTIRESOLUTION VOLUMES

One of the primary visualization applications of diamond hierarchies
has been as a multiresolution model for a volume dataset defined at
the vertices of a regularly sampled scalar field, F . We call this model
a Diamond-based Multiresolution Volume (DMV).

A multiresolution model [2, 15] is a static structure that consists of
a coarse base mesh, a set of atomic modifications and a dependency
relation on the modifications defining a partial order. In the case of

a DMV, the base mesh is a coarse LEB mesh and the modifications
correspond to the diamonds. Since each diamond corresponds to its
central vertex, the vertices are ordered according to the dependency
relation of a hierarchy of diamonds ∆. Thus, the spatial decomposi-
tion and dependency relation of a DMV are obtained from the implicit
relationships among the diamonds in ∆, and only the modifications
need to be explicitly encoded.

The minimal information encoded in a diamond δ is given by the
scalar value F(vc), associated with the central vertex vc of δ . In ad-
dition to encoding F(vc), each diamond usually encodes aggregate
information about the field values within the domain of δ , which can
be used to accelerate mesh extraction. The error ε(δ ) associated with
diamond δ encodes the maximum approximation error for any point
within the domain of δ , i.e.,

ε(δ ) = Max
p∈δ

(ε(p)), (2)

where ε(p) =
∣∣F(p)− F̂(p)

∣∣ is the absolute difference between the
field value at point p and the approximated value obtained through
barycentric interpolation of the field values at the vertices of δ . The
range of values within the domain of δ is also usually maintained. This
is used to cull irrelevant regions during field-based queries [30].

A full DMV, which we denote as ∆ f , contains diamonds corre-
sponding to all vertices of a scalar field of dimensions (2N +1)3. The
base mesh of ∆ f is a single 0-diamond δ covering the entire cubic do-
main Ω. The eight corner points of Ω (i.e. the vertices of δ ) are the
only points within ∆ f that do not correspond to diamonds.

A full DMV ∆ f can be encoded as a three-dimensional array whose
entries represent the information associated with each diamond and
can be indexed using a C-style row major ordering, or a more compli-
cated indexing scheme such as a hierarchical space-filling curve [8].

However, when some of the vertices of a full DMV ∆ f are unavail-
able or irrelevant for an intended application, a partial DMV, which
we denote as ∆p, can be much more efficient to encode than ∆ f . The
base mesh of a partial DMV ∆p is a coarse LEB mesh consisting of
diamonds from a corresponding hierarchy of diamonds ∆, whose ver-
tices are tagged with values from the scalar field F . The diamonds in
∆p are a subset of the diamonds of ∆ subject to the transitive closure
constraint that if a diamond δ belongs to ∆p then all ancestors of δ

belong to ∆p as well. Finally, the dependency relation of ∆p is the
dependency relation of ∆ restricted to the diamonds in ∆p.

A straightforward representation for ∆p is a diamond-based one,
where each encoded diamond must explicitly maintain the coordinates
of its central vertex in addition to its encoded data. However, due to the
transitive closure constraint of the partial DMV model, the encoded di-
amonds exhibit both a spatial and a hierarchical coherence which can
be exploited by clustering the diamonds into supercubes. Since ∆p is
static, and typically sparse with respect to a corresponding full DMV
we represent the internal map within supercubes using the bitflags en-
coding of Section 5.2. The supercubes at each level are indexed by the
coordinates of their origin.

7 ENCODING AN ACTIVE FRONT

Selective refinement is the general operation of extracting a variable-
resolution mesh from a multiresolution model [15]. It is defined by an
application-dependent predicate called the Level of Detail (LOD) cri-
terion, which determines the minimum set of modifications necessary
to generate a mesh of the required resolution. The LOD criterion can
be based on many factors, including approximation error, field-values
(e.g. isosurface extraction), location (e.g. view-dependent and region
of interest queries) and perception (e.g. screen-space error). Selective
refinement is performed by traversing the DAG describing the mul-
tiresolution model either in a top-down manner starting from the base
mesh or incrementally from an already extracted mesh. The status of
the refinement process is described by a cut of the DAG, called the
active front, which separates the set of modifications that have been
applied from those that have not.

When selective refinement is performed on a DMV, the active front
describes a conforming tetrahedral mesh Σ, that we call the current



mesh, which can be used to visualize an approximation of the dataset,
e.g. to extract an isosurface or for direct volume rendering. In general,
a diamond in a current mesh Σ will not contain all of its tetrahedra, and
thus diamonds need to track which of their tetrahedra are present in Σ

(see Figure 5a for an example in 2D, where, e.g., the blue diamonds
contain only one of their two triangles). A diamond in the active front
cannot be subdivided until all of its parents have been subdivided and,
thus, all of its tetrahedra are present in Σ.

(a) (b) (c)

Fig. 5. (a) A portion of a current mesh Σ (in 2D). (b) Highlighted triangles
from Σ map to triangles in the supercube σ . Gray triangles map to other
supercubes. Diamonds in Σ rarely contain all their triangles. (c) The set
of all triangles (tetrahedra in 3D) in a supercube overlap.

We have observed [26] that in a hierarchy of diamonds, a diamond
with k parents has 2k tetrahedra, and that, upon subdivision, each par-
ent of a diamond δ contributes a pair of tetrahedra to δ . Thus, since
0-diamonds have three parents, 1-diamonds have two parents and 2-
diamonds have four parents, bitflags with three, two and four bits, re-
spectively, are sufficient to track the subdivided parents of diamonds
as well as their tetrahedra in Σ. Since a diamond cannot be subdivided
until all of its parents have been subdivided, the former property can
be used to accelerate the extraction process, while the latter property
can be used to visualize the extracted mesh Σ.

A straightforward representation for encoding an active front uti-
lizes a hash table of diamonds. Each diamond δ is indexed by its
central vertex vc, and contains a set of bitflags tracking its subdivided
parents as well as any additional information that must be encoded for
the diamond. This representation requires 7 bytes of overhead for each
encoded diamond: 6 bytes for the coordinates of its central vertex and
one additional byte of bookkeeping.

However, there is a considerable amount of coherence among the
tetrahedra in Σ that a diamond-based representation of an active front
cannot exploit. Due to the LEB subdivision rule, neighboring tetrahe-
dra in Σ can differ by at most one level of refinement, so the presence
in Σ of a tetrahedron from diamond δ often indicates the presence of
tetrahedra from neighboring diamonds in the hierarchy. We therefore
propose a supercube-based representation for active fronts extracted
from a DMV. Recall that a supercube indexes 56 diamonds, of which

• 8 are 0-diamonds, each with 6 tetrahedra,

• 24 are 1-diamonds, each with 4 tetrahedra and

• 24 are 2-diamonds, each with 8 tetrahedra.

Thus, each supercube indexes up to 336 tetrahedra. Note, however,
that these tetrahedra overlap (see Figure 5c), but tetrahedra in a con-
forming mesh cannot overlap. Due to the containment relation among
the tetrahedra in the hierarchy, the presence of a tetrahedron t in Σ

precludes the presence of its parent tetrahedron and both of its chil-
dren tetrahedra from Σ. Thus, in practice, a supercube in Σ contains
significantly fewer than the 336 possible tetrahedra (see Figure 5b).

Since tetrahedra contribute to diamonds of Σ in pairs, we can track
the tetrahedra due to a single supercube in the active front Σ using
(336/2) bits = 21 bytes. Our proposed supercube-based representa-
tion for an active front therefore requires 27 bytes of overhead per
supercube: 6 bytes to index its origin and 21 bytes of bookkeeping.

8 RESULTS

In this Section, we evaluate the effectiveness of supercubes as a par-
tial DMV representation and as an active front representation across a
testbed of volume datasets of resolution up to 5123. All experiments
were run on a 2 GHz Intel Core 2 Duo laptop with 4 GB of RAM.

We first consider when it is appropriate to represent a dataset using
a partial diamond hierarchy. This is measured in terms of the den-
sity of the dataset, i.e. the percentage of samples from a full hierarchy
that are retained in the partial representation. Next, we analyze when
supercube-based representations of a partial hierarchy are appropriate.
For this, we consider the concentration of the clustering, that is, the
average number of diamonds encoded per supercube. A supercube-
based representation for a partial hierarchy of diamonds provides the
maximum benefit when the desired dataset is sparse with respect to the
full dataset and concentrated with respect to the supercube clustering.

Clustered representations typically incur some computational over-
head related to the extra level of indirection required to index the data.
We thus compare the runtime performance of the DMV representa-
tions during selective refinement queries. Since the efficiency of a
selective refinement query depends on the representation of its associ-
ated active front, we conclude by comparing the supercube-based and
diamond-based active front representations of Section 7 in terms of
performance and storage costs.

We begin by introducing some notation. Let ∆ f denote the full
DMV, containing n f = (2N + 1)3 diamonds and let ∆p denote the de-
sired partial DMV, containing np diamonds. ∆p can be encoded using
a diamond-based partial DMV ∆d or a supercube-based representation
∆s, whose np diamonds are clustered into ns supercubes. Finally, let
bδ denote the number of bytes required to encode the data associated
with each diamond, bv the number of bytes required to encode the co-
ordinates of the central vertex of each diamond and bσ the number of
bytes required to encode the indexing and bookkeeping information
associated with each supercube.

We compare the costs of these representations in Table 1 with re-
spect to an ideal representation ∆p, which only represents the np di-
amonds. This representation is not practical since it has no way of
indexing the encoded diamonds, but we use it to compare the remain-
ing representations. ∆ f must encode all n f samples but the indexing
of its elements is implicit. However, it encodes n f − np extraneous
diamonds. In contrast, ∆d encodes only the np diamonds but must also
explicitly encode the spatial coordinates of each diamond. Finally, the
overhead in ∆s can be attributed entirely to the ns supercubes.

Representation Cost Overhead

∆p np ∗bδ 0
∆ f n f ∗bδ (n f −np)∗bδ

∆d np ∗bδ +np ∗bv np ∗bv
∆s np ∗bδ +ns ∗bσ ns ∗bσ

Table 1. Storage requirements and overhead, in bytes, for the various
DMV representations. Overhead is relative to ∆p.

Using this notation, we define the density D = np/n f of the dataset
as the ratio of retained diamonds in ∆p compared to ∆ f . Also, we de-
fine the concentration C = np/ns of the dataset as the average number
of diamonds per supercube. We note that C ∈ [1,56] since we only
encode supercubes that contain at least one diamond.

By rearranging the equations in Table 1 and substituting terms for
D and C , we can compare the representations. ∆s is more compact
than ∆ f when

D <
bδ

bδ +(bσ /C )
,

∆d is more compact than ∆ f when

D <
bδ

bδ +bv



and ∆s is more compact than ∆d when C > bσ /bv. However, since all
representations must encode the np diamonds, a more relevant measure
of the effectiveness of each representation is related to its overhead
with respect to ∆p (third column of Table 1). While ∆d has a constant
overhead of bv bytes per diamond, the overhead in ∆s is related to C
as (bσ /C ) bytes per diamond.

As a concrete example, let the size of each refinement be bδ = 4
bytes as in [8]. Further, assume vertices are encoded in 6 bytes as three
unsigned shorts, then bv = 6 bytes. Finally, let bσ = 17 bytes
consisting of: the origin of the supercube (6 bytes), bitflags to indicate
the encoded diamonds (7 bytes) and a pointer to an array containing
the data (4 bytes). Then, in terms of density and concentration, ∆s
is more compact than ∆ f and ∆d , respectively, when D < 4

(4+17/C ) ,
and when C > 17/6. The gray curves in Figures 6 and 7 separate the
half-spaces in which ∆s is more compact than ∆ f by the constant to its
right. For example, when C = 17 and D = .2, ∆ f requires four times
as much space to encode as ∆s.
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Fig. 6. Density and concentration of partial DMV datasets of Table 2
extracted from a complete DMV with uniform error greater than 0% (red)
and 1% (orange). Gray curves indicate the factor by which a supercube-
based partial DMV ∆s is more compact than a full DMV ∆ f .

As a first application, consider a partial DMV ∆p generated from
a full DMV ∆ f by retaining all diamonds whose error is greater than
a given threshold ε . Since ∆p corresponds to a partial hierarchy of
diamonds, it must also retain all ancestors of the retained diamonds.
This ensures the transitive closure of the diamond dependency relation
(as described in Section 6). When ε = 0, this generates a lossless
encoding of ∆ f , i.e. ∆ f can be reconstructed from ∆p without any error.

Table 2 lists the number of elements, and storage costs in a zero-
error partial DMV ∆p for various datasets as well as their density
D and concentration C . These datasets are plotted on Figure 6 for
ε = 0% and ε = 1%. We observe that some datasets, such as Fuel
and Aneurism are extremely sparse, and achieve a 12.2 times and
17.3 times reduction in storage requirements, respectively, compared
to ∆ f . In contrast, other datasets such as Plasma and Buckyball
are quite dense, and thus, a partial representation does not yield a sig-
nificant savings compared to ∆ f . However, even for these datasets,
the size of ∆s is close to that of ∆ f (requiring 4% more and 19%
less space, respectively), whereas ∆d is much larger (requiring 2.4
times and 1.9 times more space, respectively). Most of the remain-
ing datasets achieve around three times savings for ∆s compared to ∆ f
(see last column in Table 2).

Since bv (6 bytes) is 1.5 times as large as bδ (4 bytes), the overhead
associated with ∆d compared to the ideal representation ∆p is 150%.
In contrast, the overhead of ∆s is related to the concentration of the su-
percube clustering, and averages around 12% across all datasets. Thus,
the 2.25 times savings achieved by ∆s compared to ∆d is entirely due
to the difference in storage overhead.

Partial hierarchies can also be used to reduce the storage require-
ments and mesh extraction times required for isosurface extraction
when the (set of) isovalue(s) can be determined in advance. In iso-
surfacing applications, the active cells, i.e. those that intersect the iso-
surface, typically occupy a sparse but spatially widespread subset of

Dataset N n f np ns D C ∆ f ∆d ∆s ∆ f /∆s

Fuel 6 275 K 19.9 K 620 .07 32.2 1.05 .19 .09 12.2 x
Neghip 6 275 K 129 K 3.46 K .47 37.2 1.05 1.23 .55 1.91 x
Plasma 6 275 K 265 K 4.98 K .97 53.2 1.05 2.53 1.09 .96 x
Hydrogen 7 2.15 M 545 K 16.0 K .25 34.0 8.19 5.19 2.34 3.50 x
Buckyball 7 2.15 M 1.65 M 38.3 K .77 43.0 8.19 15.7 6.90 1.19 x
Aneurism 8 17.0 M 791 K 44.6 K .05 17.7 64.8 7.54 3.74 17.3 x
Tooth 8 17.0 M 5.23 M 104 K .31 50.1 64.8 49.9 21.7 2.99 x
Engine 8 17.0 M 5.34 M 112 K .31 47.6 64.8 50.9 22.2 2.92 x
Head 8 17.0 M 5.47 M 139 K .32 39.4 64.8 52.1 23,1 2.80 x
Bonsai 8 17.0 M 5.00 M 147 K .29 34.1 64.8 47.7 21.5 3.02 x
Foot 8 17.0 M 5.90 M 151 K .35 39.2 64.8 56.3 25.0 2.59 x

Table 2. DMVs generated based on uniform field error with ε = 0. File
sizes for ∆ f , ∆d and ∆s are listed in MB (1 MB = 10242 B). All datasets
are plotted on Figure 6 (red circles).

the domain. Since isosurfaces are continuous, there is a great deal of
spatial and hierarchical coherence among the active cells.

We can thus generate an isovalue-based partial DMV ∆p from ∆ f ,
where all diamonds whose range intersects the predetermined iso-
value(s) are retained, while those not intersecting the isovalue(s) are
only retained if they are ancestors of the required diamonds. ∆p can
then be queried using selective refinement to extract adaptive tetrahe-
dral meshes and isosurfaces. This model thus trades fidelity in regions
away from the desired isosurface for storage and extraction efficiency
of the desired isosurface(s).

Table 3 lists the number of elements and the storage requirements
for the three DMV representations for each isovalue-based dataset (the
values of N and n f can be found in Table 2). The density and concen-
tration of these datasets are plotted in Figure 7. We observe that these
extracted partial DMVs are indeed sparse with respect to ∆ f , averag-
ing around 5% of the samples and often much less. They are also quite
concentrated with respect to the supercube clustering, with an aver-
age concentration of 26 out of a possible 56 diamonds per supercube.
Thus, supercube-based partial DMVs of these datasets require an av-
erage of 25 times less storage than their corresponding full DMVs. In
fact, the largest dataset Xmas{868} (orange square in Figure 7) requires
only 1.3% of the samples of ∆ f and is over 65 times more compact.

As in the error-based partial DMVs, the supercube-based encodings
are approximately 2.3 times smaller than a corresponding diamond-
based DMV, and have very low overhead (around 13%) compared to
the ideal representation ∆p.

We note that, when more than one isovalue is desired (as in the set
of Engine datasets on the bottom of Table 3, and the corresponding
colored rhombuses in Figure 7), there is also a significant amount of
coherence among the active cells of distant isovalues (e.g. 58 and
170). Thus, the supercube-based representation for Engine{58,100}
requires only 15% more storage space than either of the individual
datasets Engine{58} or Engine{100}, and has a higher concentration
than either of them. This advantage is increased in Engine{58,100,170}
as the samples from a third isovalue are added, where the density only
increases by 3% and the supercube concentration increases by .8.
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Fig. 7. Density and concentration of partial DMV datasets of Table 3
containing all diamonds intersected by the specified isovalue(s).

We now compare the runtime performance of the three DMV rep-
resentations, ∆ f , ∆d and ∆s, by comparing the rates at which they can
process diamonds during selective refinement queries. Since an active
front facilitates selective refinement, we evaluate the performance of



Dataset{Isovalue(s)} np ns D C ∆ f ∆d ∆s ∆ f /∆s

Fuel{7.2} 15.7 K 608 .057 25.8 1.05 .15 .07 15.1 x
Neghip{868} 39.5 K 1.57 K .144 25.2 1.05 .38 .18 5.95 x
Hydrogen{24} 63.1 K 2.42 K .029 26.1 8.19 .60 .028 29.3 x
Bucky{128} 2.59 K 9.94 K .121 26.1 8.19 2.47 1.15 7.12 x
Aneurism{128} 255 K 12.3 K .015 20.8 64.8 2.43 1.17 55.3 x
Tooth{650} 1.87 K 7.27 K .011 25.7 64.8 1.78 .83 78.1 x
Bonsai{35} 1.35 M 48.8 K .008 27.7 64.8 12.9 5.94 10.9 x
Foot{23.5} 3.14 M 92.3 K .185 34.0 64.8 30.0 13.5 4.80 x
Head{58} 749 K 29.7 K .044 25.2 64.8 7.14 3.34 19.4 x
Xmas{868} 1.74 M 69.3 K .013 25.1 515 16.6 7.76 66.4 x
Engine{58} 937 K 33.7 K .055 27.8 64.8 8.94 3.12 15.7 x
Engine{100} 937 K 33.7 K .055 27.8 64.8 8.94 4.12 15.7 x
Engine{58,100} 1.08 M 35.8 K .064 30.2 64.8 10.3 4.70 13.8 x
Engine{58,100,170} 1.13 M 36.5 K .067 31.0 64.8 10.8 4.90 13.2 x

Table 3. DMVs generated based on specific isovalue(s). File sizes are
listed in MB (1 MB = 10242 B). All datasets are plotted on Figure 7.

Diamond-Based (Σd) Supercube-Based (Σs)

Min Max Average Min Max Average

∆ f 252 K/s 343 K/s 317 K/s 298 K/s 354 K/s 324 K/s
∆d 223 K/s 333 K/s 301 K/s 263 K/s 340 K/s 306 K/s
∆s 237 K/s 327 K/s 296 K/s 276 K/s 331 K/s 300 K/s

Table 4. Selective refinement performance of the three DMV repre-
sentations using a diamond-based active front representation Σd and
a supercube-based active front representation Σs, in terms of the mini-
mum, maximum and average number of diamonds visited per second.

the two active front representations introduced in Section 7. Recall
that the active front of a selective refinement query on a diamond hi-
erarchy corresponds to a tetrahedral mesh called the current mesh Σ.
This mesh can be represented using a diamond-based representation,
which we denote as Σd , or through a supercube-based representation
which we denote as Σs.

Since selective refinement queries depend on the specific LOD cri-
terion used, we evaluate the performance of each structure in terms of
the number of diamonds visited by the selective refinement query per
second. In Table 4, we present the aggregate results over our testbed
of datasets for an error-based isosurface extraction query and note that
we observed the same trends when using different queries, such as re-
gion of interest and approximation error queries. The LOD criterion
for this query selects all diamonds with approximation error greater
than some threshold ε and containing a particular isovalue κ . As a
partial DMV for this query, we use the datasets generated in Table 3.

For these experiments, we implemented ∆d using a hash table from
the central vertex of each diamond in ∆d to the data associated with
it. This incurs a storage overhead inversely proportional to the load
factor of the hash table, i.e., the ratio of diamonds in ∆d to buckets
in the hash table. Across all datasets tested, we found the load factor
to average 73.5% (with a standard deviation of 16%). Thus, the hash-
indexed ∆d requires an average memory overhead of 36% compared to
the values listed in Table 3. Similarly, for ∆s, we used a separate hash
table for each level of supercubes, and indexed the data associated with
each supercube by its origin (as described in Section 5.3). We found
the load factor to average 75% (with a standard devaiation of 11%)
across the datasets, thus, requiring an average memory overhead of
33% compared to the values listed in Table 3.

We evaluate the performance of the DMV representations (i.e. the
rows of Table 4) by comparing the average number of diamonds pro-
cessed per second. Recall that due to the query type and the transitive
closure of ∆d and ∆s, all three representations process the same set
of diamonds and yield the same result. We first observe that all three
representations yield similar performance results of about 300,000 di-
amonds per second. ∆ f is the fastest DMV representation, since it can
directly access its diamonds using the array location of their central
vertices. ∆d is approximately 5-6% slower than ∆ f , due to its use of
indirect hashing, while ∆s is around 7.5% slower than ∆ f . Thus, de-
spite its required extra processing, such as extracting the supercube

origin and diamond type and the prefix sum calculation, supercube-
based ∆s’s performance is within 2% that of diamond-based ∆d .

Next, we evaluate the relative performance of the two active front
representations Σs and Σd by comparing columns 4 and 7 (AVERAGE)
of Table 4. Thus, the supercube-based active front representation Σs is,
on average, 1-2% more efficient than the diamond-based active front
representation Σd . Although this is not a significant difference, we
note that the addition (removal) of any diamond to (from) Σd incurs a
memory allocation (deallocation), whereas, due to the supercube clus-
tering, such allocations (deallocations) are rarer for Σs.

Finally, we evaluate the sizes of the two active front representations.
Recall that the supercube-based active front representation Σs requires
27 bytes overhead per supercube. Over the entire test, Σs averaged
26.5 tetrahedra per supercube (with a standard deviation of 3.1). Thus,
the supercube-based active front Σs incurs an overhead of around 1
byte per tetrahedron in the active front. In contrast, the diamond-based
active front representation Σd requires 7 bytes overhead per diamond.
Over the entire test, Σd averaged 3.3 tetrahedra per diamond (with a
standard deviation of .55). Thus, the diamond-based active front incurs
an overhead of around 2.16 bytes per tetrahedron in the active front.

We implemented both Σs and Σd using hash tables, (analogously
to our indexing of the partial DMVs above). Across all datasets, we
achieved an average load factor of 74% for Σd (with a standard devi-
ation of 15%), and thus the hash-indexed Σd incured a memory over-
head of around 36%. The average load factor for Σs was 72% (with
a standard deviation of 11%), requiring an average overhead of 39%.
Thus, a supercube-based active front representation Σs can be used to
extract an equivalent mesh from a DMV as a diamond-based represen-
tation Σd in slightly less time and using less than half the storage.

Figure 8 illustrates the clustering of tetrahedra in a supercube-based
active front by the color of their isosurface triangles.

(a) Tooth, ε > 10% (b) Fuel, ε > .03%

Fig. 8. Isosurfaces extracted from DMV models. Triangles are colored
by their embedding supercube. (a) Tooth dataset with uniform error ε >
10%. A supercube-based active front representation Σs has an average
of 26.9 tetrahedra per supercube yielding an average overhead of 1 byte
per tetrahedron. The diamond-based active front Σd has an average
of 2.9 tetrahedra per diamond yielding an overhead of 2.4 bytes per
tetrahedron. (b) Fuel dataset with uniform error ε > .03%. Σs has an
average of 25.6 tetrahedra per supercube yielding an average overhead
of 1.05 bytes per tetrahedron. Σd has an average of 3.3 tetrahedra per
diamond yielding an overhead of 2.12 bytes per tetrahedron.

9 CONCLUDING REMARKS

We have proposed the supercube as a high-level primitive for com-
pactly encoding nested tetrahedral meshes generated through longest
edge bisection. Supercubes represent the basic unit of symmetry
within the hierarchy of diamonds model, and encode all distinct types
of diamonds within the hierarchy (up to scaling factors). Supercube
clustering provides an efficient means of associating information with



a subset of the diamonds within an LEB hierarchy by exploiting the
spatial and hierarchical coherence within the dataset.

We have demonstrated that several visualization datasets are over-
sampled by a factor of three or more while at the same time the re-
tained elements have a high degree of coherence with respect to super-
cube clustering. Thus, a supercube-based partial DMV is an effective
multiresolution representation that efficiently supports selective refine-
ment queries with very little geometric or computational overhead. We
have also demonstrated that a supercube-based active front representa-
tion can accelerate selective refinement while requiring less than half
the storage of a diamond-based active front data structure.

Here, we have focused on the implementation of the internal map
between supercubes and their associated data. However, since our in-
dexing structure for the supercubes at each level utilizes a hash table
(see the end of Section 8), our partial DMV representations can be in-
flated by as much as 40%. This can reduce the benefits of a supercube-
based DMV ∆s to a full DMV ∆ f , when their relative differences are
less pronounced. However, when the relatives sizes are more signifi-
cant, a hash-indexed ∆s still provides a significant advantage over ∆ f .
Additionally, we have demonstrated that hash-indexed DMVs and ac-
tive front representations based on diamonds suffer from similar or
worse overhead than their supercube-based counterparts.

In future work, we intend to focus on the indexing structure for
diamonds and supercubes in a partial hierarchy. As mentioned in Sec-
tion 5.3, since the set of supercubes at a given level of resolution tile
the plane, an MX-octree is a promising representation for the spatial
access structure. Specifically, a pointerless MX-octree [24] should
achieve the storage goals of Tables 2 and 3. Alternatively, since ∆d
and ∆s contain static spatial data, a perfect spatial hash [14] can be
generated to yield significantly lower overhead than a standard hash
table.

We are also currently looking into modifications of the supercube
representation for higher dimensional datasets such as time-varying
volume data where the internal map of each supercube must reflect the
increased number of diamonds.
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