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Abstract

We consider a model of a 3D image obtained by
discretizing it into a multiresolution tetrahedral mesh
known as a hierarchy of diamonds. This model enables
us to extract crack-free approximations of the 3D image
at any uniform or variable resolution, thus reducing the
size of the data set without reducing the accuracy.

A 3D intensity image is a scalar field (the intensity
field) defined at the vertices of a 3D regular grid and
thus the graph of the image is a hypersurface in R4. We
measure the discrete distortion, a generalization of the
notion of curvature, of the transformation which maps
the tetrahedralized 3D grid onto its graph in R4.

We evaluate the use of a hierarchy of diamonds to
analyze properties of a 3D image, such as its discrete
distortion, directly on lower resolution approximations.
Our results indicate that distortion-guided extractions
focus the resolution of approximated images on the
salient features of the intensity image.

1 Introduction

The increasing sizes of 3D images require multires-
olution models that allow the extraction of adaptive rep-
resentations of the image at many different levels of de-
tail. A very large class of multiresolution models is pro-
vided by nested meshes, in which all elements are de-
fined by the uniform subdivision of a small set of cells.
Examples include: octrees formed by cubes and nested
tetrahedral meshes based on the Longest Edge Bisection
(LEB) operation.

A 3D image I is typically represented as a cubic grid
of samples, called voxels, encoding the image intensity
at each grid point. Since this representation requires
the entire domain to be uniformly sampled at the reso-
lution of the smallest feature within the image, octrees
are often used to aggregate the featureless regions of the
image into a nested hierarchy of cubes.

A disadvantage of voxel-based cubic representations

is that cracks between adjacent cubes lead to disconti-
nuities over the image’s intensity function. This can be
remedied by using a dual representation where the grid
points are vertices of a crack-free tetrahedral mesh de-
composing the domain of the image.

In our work, we use nested tetrahedral meshes based
on the Longest Edge Bisection (LEB) operation, in
which a tetrahedron t is bisected along the plane de-
fined by the midpoint of its longest edge e and the two
vertices of t not adjacent to e. These were originally
introduced for domain decomposition in finite element
analysis [4], and have since been applied in many dif-
ferent contexts, including scientific computing, surface
reconstruction and volume segmentation.

The curvature of a shape is an important property
that facilitates the study of its topological and metric
properties, as it measures the local defect from flat Eu-
clidean space. There is a rich literature dealing with
the problem of defining and computing discrete curva-
ture estimators for triangulated surfaces [2]. A partic-
ularly simple and efficient method is concentrated cur-
vature [1].

Discrete distortion [3] is a recent evolution of the
notion of concentrated curvature for three-dimensional
tetrahedralized shapes embedded in 4D space. Since a
3D intensity image I is a scalar field associated with
the vertices of a cubic 3D grid, the graph of I is a
hypersurface in R4 and a tetrahedral mesh Σ decom-
posing the 3D cubic grid is embedded in R4. We can
view the intensity values of I as constraints on the ver-
tices of Σ, which induce a distortion of geometry on the
tetrahedral hypersurface representing the graph of I in
R4. This distortion can be estimated through trigono-
metric relations linking dihedral and solid angles of the
tetrahedralized hypersurface. As for surface curvature,
discrete distortion highlights the local curvature of the
graph of the intensity image, i.e. of the tetrahedralized
hypersurface.

The contribution of this paper is two-fold. First, we
demonstrate the advantages of a multiresolution tetrahe-
dral model for the representation of a large 3D intensity



image I . This model enables the extraction of crack-
free approximations to I on which we can directly ana-
lyze properties of I , such as its distortion. Second, we
explore the viability of using distortion as a tool for 3D
image analysis. Specifically, we generate a multireso-
lution model based on the distortion as well as on the
intensity value.

2 Diamond Hierarchies

A Hierarchy of Diamonds ∆ is a multiresolution rep-
resentation of a 3D image I based on clusters of tetrahe-
dra, called diamonds, sharing the same bisection edge,
that we call the spine of the diamond. We have studied
the theory and the properties of hierarchy of diamonds
in arbitrary dimensions [5].

A diamond δp is said to be a parent of another dia-
mond δc if one or more of the tetrahedra in δc is gen-
erated during the bisection of the tetrahedra in δp. This
parent-child relation over the diamonds defines a direct
dependency relation over the samples of I , which can
be encoded as a directed acyclic graph (DAG).

Due to the regularity of the vertex distribution and
the subdivision rule, this model generates only three
similarity classes of diamonds containing well-shaped
tetrahedra [4]. Each diamond is completely defined by
its spine, and all its tetrahedra are split by the diamond’s
central vertex, the unique midpoint of its spine. Thus,
diamonds are in one-to-one correspondence with their
central vertices, which, in turn, are in one-to-one corre-
spondence with the samples of I . From the coordinates
of the central vertex, we use bit manipulations to extract
the complete parent-child relations. Thus, a hierarchy
of diamonds is encoded as the collection of the central
vertices of its diamonds.

We can have a full or a partial hierarchy of diamonds
representing a 3D image. A full hierarchy of diamonds
represents the complete 3D image and thus the coordi-
nates of its central vertices can be implicitly encoded,
while a partial hierarchy of diamonds requires an en-
coding of the coordinates of the central vertices. A
partial hierarchy can be especially useful when we are
interested in only a sparse subset of a large image, or
when the image is oversampled.

A (full or partial) hierarchy of diamonds ∆ is
used to efficiently extract variable-resolution tetrahedral
meshes Σ approximating a 3D image I while satisfy-
ing an application-dependent selection criterion. The
selection criterion can be defined on properties of the
domain, such as proximity to a specified region of in-
terest, or on properties of the range such as its degree
of approximation to the underlying image I . In contrast
to the octree-based approaches, such tetrahedral meshes

have a higher degree of adaptability to the selection cri-
terion, and are guaranteed to be free of cracks.

Figure 1a illustrates a variable-resolution tetrahedral
mesh Σ containing 77 K vertices and 427 K tetrahedra
extracted from a 2562×161 sample 3D image represent-
ing a Micro CT scan of a tooth. Even though Σ contains
fewer than 1% of the samples of the full image, it suf-
fices to extract accurate isosurfaces (see Figure 1b).

(a) (b)

Figure 1. (a) Tetrahedral mesh Σ extracted
from a 3D Mictor CT scan of a tooth. (b)
Isosurface embedding within Σ.

3 Discrete Distortion

The graph representation of the intensity function f
defined on a 3D image discretized as a tetrahedral mesh
Σ is a tetrahedral hypersurface (Σ; f) in R4, whose dis-
tortion with respect to the underlying discretized cubic
grid is due to the effects of the intensity values. Sim-
ilarly to the concentrated curvature of triangulated sur-
faces in 3D space [1], one may compare the solid an-
gle defect at vertices of tetrahedralized hypersurfaces in
R4. We define the distortion at a vertex p as

D(p) =
∑
ti∈t(p)

si −
∑

Ti∈T (p)

Si, (1)

where si (resp. Si) is the solid angle within Σ (resp.
within (Σ; f)), at vertex p of tetrahedron ti (resp. Ti),
and t(p) (resp. T (p)) is the set of tetrahedra incident
to p in Σ (resp. (Σ; f)). For internal vertices the sum∑
ti∈t(p) si reduces to 4π. Theoretical properties of dis-

crete distortion are studied in [3], where the concept of
distortion for the edges of the mesh is also formalized.

It can also be shown that discrete distortion gives
positive values to locally convex or concave areas of
the tetrahedralized hypersurface; negative values to sad-
dles; and null values to flat areas.

Another relevant property is that distortion is mesh-
dependent, i.e., the distortion at a vertex depends on the



way in which its neighborhood is triangulated. Even
if the local geometrical shape of Σ does not change in
R3 after a remeshing, its image (Σ; f) in R4 changes
and, thus, distortion changes to quantify this effect. The
mesh-dependent property highlights the effect of a mul-
tiresolution representation.

As an example of distortion, the electron density of
the Hydrogen molecule H2 (Figure 2, top row) and its
associated discrete distortion (Figure 2, bottom row)
are represented through three pairwise-orthogonal pla-
nar slices of the molecule, colored blue for low val-
ues and red for high values. High density values occur
within spheres centered at the atom loci, at the (symme-
try) center of the molecule (i.e., the equilibrium posi-
tion) and within nested tori around the symmetry center.
We see from the distortion slices that the electron den-
sity increases with a uniform speed near the atoms (i.e.,
almost constant distortion values) and decrease almost
linearly (i.e., nearly null distortion values) far from the
atoms. The transition of electrons from the spheres to
the symmetry center happens abruptly, as can be seen at
blue points on the distortion slices between atom’s po-
sitions and the center. This information is not captured
directly from the electron density image.

Figure 2. Axis aligned planar slices of
3D image representing Hydrogen electron
density (top) and distortion (bottom).

4 Experimental Results

We demonstrate the interplay between mesh resolu-
tion and discrete distortion through two experiments.

First, we illustrate the role of the mesh resolution
in its computed distortion over a series of increasingly
fine meshes. For this, we generate a diamond hier-
archy ∆H based on the intensity values of the 1283

Hydrogen dataset, described in Section 3, which con-
tains 2.1 M vertices. The error of a diamond δ is com-
puted as the maximum difference between the inten-
sity values of all grid points within δ, and the value
obtained by linear interpolation over δ’s vertices. We
extract a series of meshes Σεi of uniform approxima-
tion error εi from ∆H , using threshold values of εi ∈
{30%, 10%, 5%, 2%, 1%, 0.5%, 0%} of the total error
and then evaluate the distortion of the vertices of these
meshes. The number of vertices in these meshes are
{.2K, .5K, .7K, 2K, 7K, 20K, 544K}, respectively.

Figure 3 shows the cumulative distribution function
(CDF) of the discrete distortion D (horizontal axis)
of the vertices of each mesh. The sharp spike in the
CDF of all datasets around distortion D(v) = 0 in-
dicates that the vast majority of vertices have (nearly)
null distortion. As the resolution increases, this spike
becomes steeper, indicating that the increased resolu-
tion is distributed among regions with nearly null dis-
tortion. Thus, the distortion is concentrated in relatively
few vertices within the mesh. For example, when ε = 0,
more than 99% of the vertices have absolute-valued dis-
tortion D(v) ≤ |.2|. This indicates that we can obtain
a fairly accurate understanding of the image via its dis-
crete distortion even at lower resolutions, without the
need to compute the distortion on the full image.
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Figure 3. Cumulative distribution func-
tions of Hydrogen distortion.

In our second experiment, we use distortion to guide
the extraction of lower resolution approximations to the
full image. Here, we consider a 323 image represent-
ing the electron density of the C60 Buckyball molecule.
As for the Hydrogen molecule, the density corresponds
to the locus of atoms around which electrons revolve,
as well as the regions that they avoid. For this experi-
ment, we compute the distortion of the mesh ΣB at full
resolution (containing 36 K vertices and 216 K tetrahe-
dra). Since the vertices of ΣB correspond to a regularly
sampled scalar field, we generate a diamond hierarchy
∆B based on the distortion values rather than the inten-



(a) 50% distortion error (|V | = 3k, |T | = 15k)

(b) 5% distortion error (|V | = 17k, |T | = 90k)

(c) 0% distortion error (|V | = 34k, |T | = 189k)

Figure 4. Slices of tetrahedral meshes ex-
tracted from the Buckyball dataset col-
ored according to distortion (left) and in-
tensity (right) for error thresholds of 50%
(a), 5% (b) and 0% (c).

sity values. We then extract several variable resolution
meshes from ∆B guided by ΣB’s distortion. We visu-
ally compare several extracted datasets of relative error
ε = {50%, 5%, 0%} in Figure 4 through axis-aligned
slices colored by the distortion (left), where positive dis-
tortion is colored red and negative distortion is colored
blue. We also visualize the intensity values of the image
over the same meshes in Figure 4 (right).

By comparing the left and right parts of Figure 4a,
we observe that the resolution is concentrated initially
on the regions with higher absolute-valued distortion,
such as the dark red regions corresponding to the carbon
atoms of the molecule.

Since vertex distortions correspond to singularities
in the graph of the image, there is a relatively high inter-
polation error for the regions containing such singular-
ities. Thus, the salient features of the intensity field are
well approximated, even at extremely coarse approxi-
mations, while further increases to the resolution en-
hance the approximation of the intensity function. We
have obtained similar results on other 3D images de-
scribing medical and scientific datasets.

5 Concluding Remarks

We have demonstrated that a multiresolution model
based on clusters of tetrahedra, called diamonds, en-
ables the analysis of a 3D image through crack-free ap-
proximations encoded as tetrahedral meshes. We have
also demonstrated the utility of discrete distortion in an-
alyzing the approximated images and in guiding the ex-
traction process to yield accurate approximations of the
original image.

One of the important aspects of mesh-based mul-
tiresolution models is that we can analyze the image
using much fewer samples than the full image. This fa-
cilitates our analysis of large images using significantly
fewer resources.
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