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Summary. Hierarchical spatial decompositions play a fundamental role in many
disparate areas of scientific and mathematical computing since they enable adaptive
sampling of large problem domains. Although the use of quadtrees, octrees, and their
higher dimensional analogues is ubiquitous, these structures generate meshes with
cracks, which can lead to discontinuities in functions defined on their domain. In
this paper, we propose a dimension–independent triangulation algorithm based on
regular simplex bisection to locally decompose adaptive hypercubic meshes into high
quality simplicial complexes with guaranteed geometric and adaptivity constraints.

1 Introduction

Hypercubes are the basis for many adaptive spatial subdivisions, such as quadtrees
in 2D, octrees in 3D and their higher dimensional analogues. Due to their simple
definition in arbitrary dimension – any hypercube can be decomposed into 2d hyper-
cubes covering its domain – such decomposition schemes are widely implemented
and have been successfully applied to problems across many different application
domains [20].

However, hypercubic meshes do not generate conforming, i.e. crack-free, adaptive
decompositions. This can be problematic, for example, when values are associated
with the vertices of a mesh defining a discrete scalar function, since such cracks
can lead to discontinuities in the function defined over the domain. In contrast,
simplicial decompositions admit highly adaptive conforming meshes but can require
many more cells to cover the same domain.

Downstream applications of these meshes, such as finite element analysis and
scalar field modeling and visualization, often require mesh elements to satisfy cer-
tain quality constraints related to the shapes of the elements as well as the rate of
adaptivity within the mesh. Geometric quality constraints can be enforced by using
refinement rules that only generate mesh elements from a small set of acceptable
modeling primitives [4]. A common adaptivity constraint is to ensure that neighbor-
ing elements differ in resolution by at most one refinement level, i.e. that the ratio
of edge lengths between neighboring elements can be at most 2:1. This constraint
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has been considered in several problem domains, including computational geome-
try [3, 6], scientific visualization [9, 32] and computer graphics [26] under various
terms such as restricted [26, 23], smooth [15] and balanced [16, 24].

At the same time, there has been an increasing interest in the research on geo-
metric modeling and scientific visualization to deal with data in medium and high
dimensions [14, 5]. This is facilitated by the development of dimension–independent
algorithms and data structures. Examples include time-varying volume data sets,
which can be viewed as 4-dimensional data sets, and in general applications in four-
dimensional space-time, when we consider 3D spatial entities moving over time. An-
other example is given by applications in six-dimensional phase-space, where data
are characterized by three spatial coordinates and three momentum variables.

In this paper, we are concerned with the relationship between nested meshes
formed by hypercubes, and their decompositions into high quality simplicial com-
plexes. Specifically, we propose a simplicial decomposition for nested hypercu-
bic meshes generated by applying a regular simplex bisection rule to locally tri-
angulate each hypercube in the mesh. Due to the properties of this bisection
scheme [13, 25, 4, 29, 31], our algorithm generates adaptive simplicial complexes
composed of high quality simplices from a small set of geometric primitives. Further-
more, compatibility between adjacent triangulated hypercubes is implicitly enforced
and the complexity of the mesh increases by a dimension–dependent multiplicative
constant. Our algorithm depends only on local properties of the edges of the hy-
percubes in the mesh and can be easily incorporated into existing meshing systems
based on nested hypercubic meshes, such as quadtrees, octrees and their higher
dimensional counterparts.

The remainder of this paper is organized as follows. After a review of relevant
background notions in Section 2, we discuss prior work on balanced hypercubic
meshes and their triangulations in Section 3. In Section 4, we review properties of
the regular simplex bisection scheme which will be relevant for our triangulation
algorithm in Section 5. We discuss empirical results of our algorithm in the context
of a 3D isosurfacing application in Section 6 and compare the meshes generated by
our algorithm to those of an alternate 3D triangulation algorithm. Finally, we draw
some concluding remarks in Section 7.

2 Background notions

In this Section, we review concepts related to polytopic meshes and to nested mesh
refinement that we will use in the remainder of the paper.

2.1 Polytopic meshes

A convex polytope is a subspace of Rn bounded by a set of half-spaces. Polytopes
generalize line segments (1-polytopes), polygons (2-polytopes) and polyhedra (3-
polytopes).

We define a d-cell as a convex polytope in some d-dimensional subspace of Rn.
Let γ be a d-cell. Then, an i-dimensional face γi of γ, 0 ≤ i ≤ d, is an i-cell on the
boundary of γ. We refer to a 0-cell as a vertex, a 1-cell as an edge, and a (d− 1)-cell
as a facet.
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A polytopic mesh P is a finite collection of polytopic cells such that (a) if γ is
a cell in P, then all faces γi of γ also belong to P (b) the interiors of cells in P are
disjoint. The dimension, or order, of a polytopic mesh is the maximum of the orders
of the cells forming it. In a polytopic mesh, cells that are not on the boundary of any
other cells are called top cells. Also, in a polytopic mesh of order d with a manifold
domain, as we will consider here, all top cells are d-cells. Such meshes are referred
to as pure.

If, additionally, the intersection of any two cells γ1, γ2 ∈ P is a lower dimensional
cell on the boundary of γ1 and γ2, then P is said to be conforming, or compatible.
Conforming meshes are important in many applications since they ensure that there
are no cracks or T-junctions between adjacent cells.

Hypercubic meshes

Hypercubes are the higher dimensional analogues of line segments (1-cubes), squares
(2-cubes) and cubes (3-cubes). An interesting property of hypercubes is that all faces
of a d-cube are lower dimensional hypercubes. Given a d-cube h, an i-face of h is
any i-cube on the boundary of h, where 0 ≤ i ≤ d. The number of i-faces of a d-cube
is given by 2d−i

(
d
i

)
. Unless otherwise indicated, we refer to axis-aligned hypercubes,

where all such directions are parallel with the Euclidean coordinate axes.
A hypercubic mesh is a polytopic mesh containing only hypercubes. Note that

a hypercubic mesh can only be conforming if all hypercubes are uniform in size.
Two d-cubes h1 and h2 in a hypercubic mesh are k-neighbors if their intersection
(h1 ∩ h2) defines a k-cube.

Simplicial meshes

Another family of cells that has members in arbitrary dimension is defined by the
simplices, which generalize the line segment (1-simplex), the triangle (2-simplex) and
the tetrahedron (3-simplex). A d-dimensional simplex, or d-simplex, is the convex
hull of (d+ 1) affinely independent points in the n-dimensional Euclidean space. An
i-face of a d-simplex σ is the i-simplex defined by any (i + 1) vertices of σ. The
number of i-faces of a d-simplex is thus

(
d+1
i+1

)
.

A simplicial mesh Σ is a polytopic mesh containing only simplices, that is, all
faces of a simplex σ ∈ Σ belong to Σ, and the interiors of simplices from Σ are
disjoint. Similarly, a simplicial complex is a simplicial mesh that is conforming. A
simplicial complex of order d is referred to as a simplicial d-complex. As with cubes,
all faces of a simplex are simplices. However, in contrast to hypercubic meshes,
simplices in a conforming simplicial mesh do not need to have uniform size.

2.2 Nested mesh refinement

A mesh refinement scheme consists of a set of rules for replacing a set of cells Γ1

with a larger set of cells Γ2, i.e. |Γ1| < |Γ2|. In a nested refinement scheme, Γ1 and
Γ2 cover the same domain.

In this paper, we are concerned with nested mesh refinement schemes in which
the vertices are regularly distributed, that is, the vertices of Γ2 are located at the mid-
points of the faces of the cells of Γ1. The two predominant types of such refinement
schemes are regular refinement and bisection refinement [25, 4].
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(a) Regular refinement of 2-cube (b) Regular refinement of 3-cube

Fig. 1: Regular refinement of a d-cube generates 2d cubes.

In regular refinement schemes, a single cell γ is replaced by 2d cells. Figure 1
illustrates the regular refinement of a square (i.e., a 2-cube) and of a cube (i.e., a 3-
cube). When applied to a hypercubic domain, this rule generates quadtrees, octrees
and their higher-dimensional counterparts. Similar schemes have been developed
for the regular refinement of simplices, leading to data structures referred to as
simplicial quadtrees [17].

Alternatively, in bisection refinement schemes, a single cell γ is replaced by
the two cells obtained by splitting γ along a hyperplane. When applied to meshes
composed of hyper-rectangles, and the splitting hyperplane is aligned with one of the
bounding facets, this leads to kD-trees. Alternatively, when applied to simplices, this
operation is referred to as simplex bisection. In this case, the splitting hyperplane
cuts through the midpoint vm of a single edge e of the simplex σ and all vertices of
σ not incident to e (see Figure 2).

e

vm

(a) Triangle bisection

vm

e

(b) Tetrahedron bisection

Fig. 2: A simplex is bisected along the hyperplane defined by the midpoint vm
(red) of an edge e (green) and all vertices (blue) not adjacent to that edge.

3 Related Work

In this Section, we are primarily concerned with work related to balanced nested
hypercubic meshes and their conforming decompositions over a regularly sampled
domain. A comprehensive survey of irregular triangulations can be found in [2].
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Adaptive domain decompositions often impose rules on the allowed degree of
decomposition among neighboring elements and thus are obtained by refining neigh-
boring elements until the level of subdivision meets certain balancing requirements.
Von Herzen and Barr [26] propose the restricted quadtrees for modeling parametric
surfaces and define triangulation rules for rendering them. A restricted quadtree is
a quadtree in which two edge-adjacent squares differ by at most one level in the
decomposition. Sivan and Samet [23] first use such decompositions as a spatial data
structure, specifically, for terrain modeling, and study different rules for subdividing
the squares into triangles.

Bern and Eppstein [3] define a balanced quadtree as a mesh in which orthogonally
adjacent nodes cannot be more than one level of refinement apart, and prove that a
balanced quadtree in dimension d is at most a constant factor larger than its unbal-
anced counterpart. They also prove that simplices generated by using a Delaunay
triangulation of a balanced hypercubic mesh have bounded angles. Moore [16] iden-
tifies different types of neighbors on which to balance a nested hypercubic hierarchy
and uses this to find optimally tight bounds on the cost of balancing quadtrees,
with an upper bound of O(3d). Specifically, a nested hypercubic mesh C is said to be
k-balanced if all k-neighbors differ in refinement level by at most one [16]. Our trian-
gulation algorithm (Section 5) depends on edge-balanced nested hypercubic meshes,
where hypercubes adjacent along an edge can differ by at most one refinement.

In applications where conforming meshes are important, restricted quadtree
meshes can be triangulated into simplicial complexes [26, 22, 33]. Such meshes can
be triangulated based on red-green rules [33] or on simplex bisection rules [26, 22].
In the former case, which we refer to as Delaunay-based triangulations, cases are
explicitly defined, for example, based on a Delaunay triangulation of the cube ver-
tices. Figure 3a illustrates a complete set of triangulation cases (up to symmetry)
for a square domain [18]. An alternate set of cases can be found in [33]. An advan-
tage of Delaunay-based triangulation (in 2D) is that it does not require additional
vertices, referred to as Steiner vertices, to triangulate the mesh. However, in higher
dimensions these would likely be required. In contrast, bisection-based triangulations,
such as the one proposed in Section 5, do not require explicit triangulation cases,
but can require additional vertices along the faces of the hypercube adjacent to a
higher resolution neighbor. A complete set of bisection-based triangulation cases for
a square domain (due to [22]) is illustrated in Figure 3b. An alternative bisection-
based approach (in 2D) is to remove unmatched vertices from higher resolution
neighbors [19].

Plantinga and Vegter [18] propose triangulation cases for edge-balanced 3D oc-
trees through the use of a Delaunay-based triangulation of the cube faces. Each
cube is then tetrahedralized by connecting the face triangulations to the cube cen-
ters. We compare tetrahedral meshes generated by our algorithm to those generated
by [18] in Section 6. A bisection-based triangulation has been suggested for balanced
octrees [11], but details of this triangulation are not provided.

In higher dimensions, Weigle and Banks [27] propose a simplicial decomposition
of hypercubes that recursively adds a vertex to the midpoint of each cell. This
algorithm generates (non-adaptive) regular simplex bisection meshes, but has not
been proposed in an adaptive setting.

Alternatively, conforming representations have been proposed for adaptive quadri-
lateral or hexahedral meshes based on explicit decomposition rules for neighboring
cells of different sizes [21]. These rules are based on bisection (2:1) or trisection
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(a) Delaunay-based triangulations of a square

(b) Bisection-based triangulations of a square

Fig. 3: Unique triangulation cases (up to symmetry) for squares (2-cubes)
based on Delaunay triangulation (a) and bisection triangulation (b).

(3:1) of the hypercube edges. Recent work has focused on simpler decompositions
and implementations for quadrilateral [10] and hexahedral meshes [12]. To the best
of our knowledge, such decomposition rules have not been generalized to higher
dimensional domains.

Compared to simplicial decompositions, such as the approach presented in this
paper, conforming adaptive quadrilateral meshes and hexahedral meshes can be
generated using fewer cells. However, in cases where values must be interpolated
within each cell, the latter require multi-linear interpolation (based on 2d values)
while the former admit linear interpolation (based on only (d+ 1) values).

4 Regular Simplex Bisection Meshes

A popular class of nested simplicial meshes over a regularly sampled hypercubic
domain Ω is generated by the Regular Simplex Bisection (RSB) scheme. The initial
mesh is a d-dimensional cube that has been refined along one of its diagonals into d!
simplices of order d. This refinement is the canonical simplicial decomposition of a
hypercube, and is often referred to as Kuhn’s subdivision [4] (see the left images in
Figures 4a and 4b). One of the nice properties of a Kuhn-subdivided cube is that its
lower dimensional faces are compatibly subdivided Kuhn cubes [7], and thus space
can be tiled by translated (or reflected) Kuhn cubes.

Each simplex in this scheme is generated by bisecting an existing simplex along
a predetermined edge, which is implicitly determined through a consistent ordering
of the vertices [13, 25, 1]. In dimension d, this generates at most d similarity classes
of simplices [13] that we refer to as RSB simplices. A recent survey on the RSB
scheme and its applications can be found in [31].
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(a) 2D diamonds
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(b) 3D diamonds

Fig. 4: The two classes of 2D diamonds (a) and the three classes of 3D dia-
monds (b).

4.1 Simplex hierarchies

The containment relation among simplices generated by the RSB scheme defines a
nested hierarchy of simplices, which can be represented as a forest of binary trees in
which each parent simplex has two child simplices. We refer to any mesh generated
by the RSB scheme over an initially Kuhn-subdivided mesh as an RSB mesh.

4.2 Diamond hierarchies

RSB meshes can be non-conforming. Thus, a conforming variant of the RSB scheme
has been defined, in which the set of all RSB simplices sharing the same bisection
edge, typically referred to as a diamond, must be bisected concurrently. Since all
simplices in a diamond share the same bisection edge, the d classes of RSB simplices
correspond to d classes of diamonds.

The bisection edge of a diamond of class i, where 0 ≤ i < d, which we refer to as
the spine of the diamond, is aligned with the diagonal of an axis-aligned (d−i)-cube.
The domain of a diamond can be decomposed as a cross product of two hypercubes
that intersect at the midpoint of the diamond’s spine [29]. In particular, we note that
0-diamonds correspond to Kuhn-subdivided d-cubes. Also, the spine of a (d − 1)-
diamond is aligned with an edge of a hypercube (see the right images in Figures 4a
and 4b). Furthermore, a single vertex, which we refer to as the diamond’s central
vertex, is introduced during diamond refinement, at the midpoint of its spine.

The containment relation of all simplices within a diamond defines a direct de-
pendency relation among the diamonds. Thus, the parents of a diamond δ are those
diamonds whose refinement generates a simplex belonging to δ, and without which
δ cannot be refined. The direct dependency relation can be modeled as a Directed
Acyclic Graph (DAG) whose nodes are diamonds and whose arcs connect a diamond
with its children. The diamonds, together with the dependency relation, define a
multiresolution model that is referred to as a hierarchy of diamonds.

A hierarchy of diamonds is used to efficiently extract variable-resolution con-
forming RSB meshes, which we refer to as diamond meshes, satisfying the direct
dependency relation of the hierarchy. Since each simplex σ in a diamond mesh Σd

can be uniquely associated with a single diamond, Σd can be compactly encoded in
terms of its diamonds. An efficient encoding for diamonds has been proposed in [29]
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(a) Unbalanced (b) Edge-balanced (c) Triangulated

Fig. 5: Overview of triangulation algorithm (in 2D). Given an arbitrary nested
hypercubic mesh (a), we first edge-balance the mesh (b) and then apply a local
bisection-based triangulation to each hypercube (c).

based on the observation that each of the O(d) parents of a diamond δ contributes
O(d!) simplices to δ upon its refinement. Thus, each diamond in Σd can be encoded
using only O(d) space.

5 Triangulating nested hypercubic meshes

In this Section, we introduce a simple dimension–independent algorithm to trian-
gulate a nested hypercubic mesh C. Our triangulation algorithm is based on the
observation that 0-diamonds cover a hypercubic domain, and thus, nested hypercu-
bic meshes can be considered as a special case of (non-conforming) diamond meshes
consisting of only 0-diamonds. Our triangulation is based on a local bisection refine-
ment within each hypercube of C. This converts C into a conforming RSB mesh Σ
covering the domain of C, i.e. Σ is a simplicial complex defined by a collection of
Regular Simplex Bisection (RSB) simplices. The properties of RSB simplices [13, 31]
ensure the quality of the triangulation. Specifically, the simplices in the mesh belong
to at most d similarity classes of well-shaped simplices, and the valence of a vertex
is at most 2dd!.

Our algorithm consists of three stages. First, we edge-balance the mesh (Sec-
tion 5.1). This ensures that each face of a hypercube within C is refined by at most
one internal vertex (see Figure 6). Next, we iterate the vertices of the edge-balanced
mesh and cache them (Section 5.2). This replaces potentially expensive neighbor-
finding operations with a single vertex lookup on each edge of the hypercube. Finally,
we triangulate each hypercube locally using a diamond-based bisection refinement
(Section 5.3). We conclude with a proof that the generated mesh Σ is a simplicial
complex and find bounds on the complexity of Σ with respect to C. Our algorithm
is summarized in Figure 5.

5.1 Mesh balancing

Let C be a (variable-resolution) nested hypercubic mesh obtained through regular
refinement of an initial hypercubic domain Ω.
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(a) Edge-balanced (b) Not edge-balanced

Fig. 6: The refinement level of edge-neighbors in an edge-balanced hypercubic
mesh (a) can differ by at most one. Otherwise, faces of hypercubes within the
mesh can contain more than one internal vertex (b).

(a) Unrefined (b) Refined edge (c) Refined face (d) All edges refined

Fig. 7: Bisection-based triangulation of a hypercube (shown in 3D) depends
entirely on its refined edges.

For our triangulation algorithm, we require C to be an edge-balanced nested
hypercubic mesh. This ensures that the faces of each hypercube need to be refined
at most once, as well as the quality of the generated elements. Otherwise, the edges
of its cubes might require more than one refinement, as can be seen in Figure 6b,
where the edge of the blue cube (at level ` − 1) adjacent to the orange cube (at
level `+ 1) has more than one internal vertex.

If the input mesh Cin is not edge-balanced, we can convert it to an edge-balanced
mesh C using, e.g., Moore’s greedy algorithm [16]. Note that this increases the num-
ber of hypercubes in the mesh by at most a constant factor (assuming a fixed
dimension d) [28, 16].

5.2 Vertex caching

Our local triangulation algorithm only refines hypercube edges that have at least one
smaller edge-neighbor. Since hypercubes can have many edge-neighbors, neighbor-
finding operations can be cost-prohibitive at runtime. However, since C is edge-
balanced, any refined neighbors of a hypercube h along an edge e will contain a
vertex located at the midpoint vm of e (see Figures 6a and 5b). Once we determine
if vm exists in C, we no longer require these neighbor-finding operations.
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Algorithm 1 CacheVertices(C)

Require: C is an edge-balanced nested hypercubic mesh.
Ensure: Vertices(C) is a spatial index on the vertices of cubes in C.
1: Vertices(C)← ∅.
2: for all hypercubes h ∈ C do
3: for all vertices v ∈ h do
4: Insert v into Vertices(C).

Algorithm 2 TriangulateHypercubicMesh(C)

Require: C is an edge-balanced nested hypercubic mesh.
Require: Vertices(C) contains all vertices of hypercubes in C.
Require: Σh is an RSB mesh covering hypercube h ∈ C.
Ensure: Σ =

⋃
h∈C
{Σh} is a conforming RSB mesh covering C.

1: for all hypercubes h ∈ C do
2: Σh ← ∅.
3: Let δh be the 0-diamond corresponding to h.
4: Insert δh into Σh.
5: for all edges e ∈ h do
6: Let vertex v be the midpoint of e.
7: if v ∈ Vertices(C) then
8: Let δe be the (d− 1)-diamond associated with edge e.
9: Insert δe into Σh.

10: LocalRefineDiamond(δe, Σh, h).

Algorithm 3 LocalRefineDiamond(δ,Σh, h)

Require: The domain of diamond δ intersects h.
Require: Σh is a conforming RSB mesh restricted to the domain of hypercube h.
Ensure: δ is refined in Σh.
1: for all diamonds δp ∈ Parents(δ) do
2: Let vp be the central vertex of δp.
3: if δp is not refined and vp ∩ h 6= ∅ then
4: LocalRefineDiamond(δp, Σh, h).

5: // Refine δ by bisecting all of its simplices within Σh

6: RefineDiamond(δ,Σh).

We therefore cache the vertices of C in a hash-table, (see Algorithm 1). Since
each d-cube contains 2d vertices, the cost of this step on a mesh with |h| hypercubes
is O(2d · |h|), and the average cost of each vertex lookup is O(1).
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5.3 Hypercube triangulation

Our triangulation algorithm (see Algorithm 2) generates a globally conforming RSB
mesh Σ through a local triangulation Σh of each hypercube h ∈ C. This triangulation
is entirely determined from a hypercube’s refined edges.

We first convert each hypercube h ∈ C to an RSB mesh Σh defined by the
0-diamond associated with h (lines 2–4 of Algorithm 2). Since this is a Kuhn-
subdivision of h (see Section 4), it contributes d! simplices to Σh. See Figure 7a
for an example in 3D.

For each edge e ∈ h that is refined in a neighboring hypercube, we add the
(d − 1)-diamond δe associated with edge e to Σh, and locally refine δe within Σh.
As mentioned in Section 5.2, we can determine the refined edges of a hypercube by
checking if the midpoint of each edge is a vertex in C (lines 6–7).

The function LocalRefineDiamond(δe, h) (Algorithm 3) ensures that all dia-
mond ancestors of δe whose central vertex intersects h (up to δh) are added to Σh.
This satisfies the transitive closure of the diamond dependency relation, restricted
to the domain of h, of each refined edge of h (see [29] for more details).

Figure 7 shows some possible triangulations Σh of a 3-cube h. In Figure 7a, none
of the edges of h are refined, so Σh is defined by the 0-diamond associated with h
and contains d! simplices. This implies that all edge-neighbors of h in C are at the
same level of refinement or one level higher in the hierarchy.

In Figure 7b one of the edges (red) of h is refined. The two facets of h adjacent
to this edge are refined in Σh, as is the center of h. This triangulation occurs when
a single edge-neighbor of h that is not a facet-neighbor, is refined.

Figure 7c illustrates the triangulation Σh when all four edges along a facet of h
are refined. This corresponds to the case where a facet-neighbor of h is refined.

Figure 7d illustrates the triangulation Σh of h when all edge-neighbors of h are
refined. Σh is a fully-subdivided hypercube [29], and is defined by 2d · d! simplices.
Observe that all faces of h in Σh are refined.

The following Theorem proves that Algorithm 2 always produces a simplicial
complex. Furthermore, the complexity of the generated mesh Σ with respect to
the input hypercubic mesh C is bounded by a constant that depends only on the
dimension d of the domain.

Theorem 5.1 Given an edge-balanced hypercubic mesh C defined by |h| hypercubes,
Algorithm 2 generates a conforming RSB mesh Σ =

⋃
h∈C
{Σh} and is defined by |σ|

RSB simplices, where |h| · d! ≤ |σ| < |h| · 2d · d!

Proof. To show that Σ is conforming, we need to prove that (a) the triangulation
Σh of each hypercube h is locally conforming, and (b) the boundaries Σh ∩ Σh′

between neighboring hypercubes h and h′ are also conforming.
The first constraint is satisfied since diamond refinement always generates a

conforming RSB mesh. The function LocalRefineDiamond(δe, h) can be viewed
as the triangulation of the root diamond in a hierarchy of diamonds after some of
its edges have been refined.

The second constraint relies on the edge-balancing constraint of the input mesh
C, as well as the properties of Kuhn-subdivided and fully-subdivided hypercubes
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(see [29, 31]). Note that, vertex-adjacent hypercubes that are not edge-adjacent are
always conforming since their intersection is a vertex.

We first consider the case where the two neighboring hypercubes h and h′ are
at the same level of refinement. Since opposite pairs of lower dimensional faces
of a Kuhn-subdivided hypercube are conforming, unrefined faces of neighboring
hypercubes at the same resolution are conforming. Next, since our refinement rule
in Algorithm 2 depends on the closed refinement of the edges, the lower dimensional
faces in h∩h′ are guaranteed to bisect in Σh and Σh′ , i.e. the parents of a diamond
δe associated with edge e, restricted to h ∩ h′ will be identical for Σh and Σh′ .

Finally, if h and h′ are not the same size, assume, without loss of generality, that
the level of h is ` and that of h′ is (`+ 1). Due to the edge-balancing constraint on
C, it is not possible for faces of h′ that belong to h∩h′ to be refined. Thus, the only
cases we need to consider are the refinement of faces of h in h ∩ h′. Since the edges
in h∩h′ are refined by Algorithm 2, all higher dimensional faces are refined as well.

We conclude the proof by discussing the complexity of Σ. Let |h| be the number
of hypercubes in C and |σ| be the number of simplices in Σ. Since Σh minimally
contains the d! simplices obtained through a Kuhn-subdivision of h (i.e. the simplices
in its corresponding 0-diamond), the lower bound on |σ| is |h| · d! simplices. This
lower limit is obtained when C is a uniform resolution hypercubic mesh.

Similarly, since each edge (i.e. the (d − 1)-faces) of a hypercube in C can be
refined at most once, all j-faces, j < (d − 1), can be refined at most once. Thus,
each local triangulation Σh, in the worst case, is a fully-subdivided hypercube. Σh

therefore contributes at most 2d · d! simplices. This gives an upper bound on |σ| of
|h| · 2d · d!. This upper bound is not tight since it is not possible for all edges of all
hypercubes within a hypercubic mesh to be refined at the same time. ut

6 Results

As a proof of concept, we demonstrate the bisection-based algorithm of Section 5
in an adaptive 3D isosurfacing application. We compare triangulations extracted
from edge-balanced cubical meshes using bisection-based and Delaunay-based tri-
angulations as well as triangulations extracted from a corresponding hierarchy of
diamonds (see Table 1). In each case, C is a nested hypercubic mesh (in 3D), Σh

is its associated bisection-based triangulation (extracted using Algorithm 2), Σp is
its associated Delaunay-based triangulation (using the Algorithm of Plantinga and
Vegter [18]) and Σd is a diamond-based RSB mesh extracted from a corresponding
hierarchy of diamonds using the same extraction criteria. In all cases, the error as-
sociated with a cube or a diamond is the maximum interpolation error (computed
using barycentric interpolation on its simplicial decomposition) among the points
within its domain.

Recall that in the Delaunay-based triangulation of [18], Steiner vertices are
inserted at the midpoint of every cube, but no additional vertices are added to
their faces. In contrast, our bisection-based triangulation only adds Steiner points
to cubes that have a smaller edge-neighbor, but can also add Steiner points to a
hypercube’s faces. As we can see from Table 1, the overhead of our algorithm in the
3D case compared to the Delaunay-based triangulation (in terms of the number of
vertices and tetrahedra) is approximately 10%. However, since the bisection-based
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Dataset N Mesh type
Vertices Primitives Tetrahedra
|v| |h| or |δ| |σ|

Fuel 6

C 20.0 K 15.3 K -
Σh 37.5 K 43.7 K 218 K
Σp 35.3 K - 206 K
Σd 26.7 K 23.2 K 87.5 K

Hydrogen 7

C 82.2 K 62.4 K -
Σh 156 K 187 K 928 K
Σp 147 K - 853 K
Σd 108 K 93.0 K 357 K

Bunny 8

C 627 K 467 K -
Σh 1.20 M 1.45 M 7.20 M
Σp 1.09 M - 6.43 M
Σd 848 K 735 K 2.73 M

Engine 8

C 1.11 M 850 K -
Σh 2.06 M 2.52 M 12.7 M
Σp 1.97 M - 11.6 M
Σd 1.60 M 1.40 M 5.29 M

Tooth 8

C 241 K 181 K -
Σh 461 K 556 K 2.76 M
Σp 421 K - 2.48 M
Σd 325 K 281 K 1.05 M

Bonsai 8

C 1.69 M 1.31 M -
Σh 2.97 M 3.54 M 17.9 M
Σp 3.0 M - 17.6 M
Σd 2.20 M 1.94 M 7.57 M

Head 8

C 1.04 M 784 K -
Σh 1.99 M 2.39 M 11.9 M
Σp 1.82 M - 10.7 M
Σd 1.38 M 1.20 M 4.20 M

Armadillo 8

C 262 K 195 K -
Σh 513 K 621 K 3.0 M
Σp 458 K - 2.70 M
Σd 349 K 301 K 1.12 M

Table 1: Number of vertices |v|, primitives (cubes |h| or diamonds |δ|), and
tetrahedra |σ| in variable resolution meshes extracted from scalar fields of
maximum resolution N (i.e., datasets defined by (2N +1)3 samples). For each
dataset, C is an edge-balanced nested hypercubic mesh, Σh is a conforming
diamond mesh generated from C using Algorithm 2, Σp is the tetrahedral
mesh extracted from C using the Delaunay-based triangulation algorithm of
Plantinga and Vegter [18] and Σd is a diamond mesh extracted from the
corresponding hierarchy of diamonds.
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algorithm generates conforming RSB meshes that satisfy the direct dependency
relation of a hierarchy of diamonds, they can be efficiently encoded as diamond
meshes, requiring O(|δ|) space, rather than as irregular simplicial meshes, requir-
ing O(|σ|) space [30]. Furthermore, while our bisection-based algorithm is defined
in a dimension–independent manner, there would be difficulties in generalizing the
Delaunay-based algorithm to higher dimensions. For example, a four-dimensional
version of the Delaunay-based algorithm would require explicit triangulation cases
for the different edge refinement configurations of the cubical faces of a 4-cube.

From Table 1, we see that nested cubical meshes C require approximately 66%
the number of primitives (hypercubes) as their corresponding diamond meshes Σd

to satisfy the same constraints. However, their triangulations Σh generate approx-
imately 2.5 times as many tetrahedra as Σd. We can see this in Figure 8, which
illustrates a cubical mesh extracted from the 2013 Bunny dataset (Figure 8a) as
well as its bisection-based triangulation (Figure 8b), and the diamond mesh ex-
tracted from a corresponding hierarchy of diamonds (Figure 8c), for the isosurface
depicted in Figure 8d.

7 Concluding Remarks

In this paper, we introduced a dimension–independent algorithm for triangulating
nested hypercubic meshes. This triangulation was motivated by the observation that
0-diamonds have a hypercubic domain, and thus nested hypercubic meshes can be
viewed as (non-conforming) diamond-meshes composed of only 0-diamonds.

We compared our bisection–based triangulation to the Delaunay-based triangu-
lation of Plantinga and Vegter in the 3D case. Although our 3D triangulation has
a slight overhead with respect to the number of simplices and vertices, it admits
an efficient representation as a diamond-based RSB mesh, which can significantly
reduce the storage costs.

Furthermore, since our algorithm is defined in arbitrary dimensions, it can be
easily incorporated into existing implementations of nested hypercubic meshes to
generate high-quality triangulations for use in downstream applications. We are
currently working on a 4D implementation of our algorithm to explore the benefits of
this approach for the analysis and visualization of time-varying volumetric datasets.

As future work, we are investigating the relationship between meshes generated
by hierarchies of simplices, which can be non-conforming, those generated by hierar-
chies of diamonds, which are always conforming, and those generated by a bisection-
based triangulation of a nested hypercubic mesh. Let us call the family of meshes
generated by simplex bisection as S, the family of meshes generated by diamond
refinement as D and the family of meshes generated by triangulating nested hyper-
cubic meshes according to Algorithm 2 as H. It has previously been observed [8] in
the 2D case that H ⊂ D.

Since each diamond refinement is defined in terms of several simplex bisection
operations, and since the hypercube triangulation scheme is defined in terms of
diamond refinements, the following relationship holds in arbitrary dimension:

H ⊂ D ⊂ S. (1)

Note that each relationship defines a proper subset. I.e. there exist RSB meshes
that are not conforming (i.e. Σ ∈ S, but Σ /∈ D), as well as conforming RSB meshes
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(a) Nested cubical mesh, C (b) Bisection-based triangulation, Σh

(c) Diamond mesh, Σd (d) Extracted isosurface

Fig. 8: Decompositions of the 2013 bunny dataset (a-c) associated with iso-
value κ = 0 (d), colored by level of resolution. An edge-balanced cubical mesh
(a) with error less than 0.3% contains 156K cubes. Its bisection-based tri-
angulation Σh (b) contains 691K diamonds. A diamond-based mesh Σd (c)
contains 166K diamonds.
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(a) Σh ∈ H (b) Σd ∈ D (c) Σs ∈ S

Fig. 9: Minimal RSB triangulations to generate a given RSB simplex (blue
triangle) for nested hypercubic mesh (a), hierarchy of diamonds (b) and hier-
archy of simplices (c). Note that Σd /∈ H since it does not correspond to an
edge-balanced hypercubic mesh, and Σs /∈ D since it is not conforming.

that are not extractable from a triangulated edge-balanced hypercubic mesh. (i.e.
Σ′ ∈ D, but Σ′ /∈ H, see Figure 9 for examples in 2D).
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