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ABSTRACT
We propose the PR-star octree as a combined spatial data structure
for performing efficient topological queries on tetrahedral meshes.
The PR-star octree augments the Point Region octree (PR Octree)
with a list of tetrahedra incident to its indexed vertices, i.e. those
in the star of its vertices. Thus, each leaf node encodes the min-
imal amount of information necessary to locally reconstruct the
topological connectivity of its indexed elements. This provides the
flexibility to efficiently construct the optimal data structure to solve
the task at hand using a fraction of the memory required for a cor-
responding data structure on the global tetrahedral mesh. Due to
the spatial locality of successive queries in typical GIS applications,
the construction costs of these runtime data structures are amortized
over multiple accesses while processing each node. We demonstrate
the advantages of the PR-star octree representation in several typi-
cal GIS applications, including detection of the domain boundaries,
computation of local curvature estimates and mesh simplification.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—Curve,
surface, solid, and object representations Hierarchy and geometric
transformations; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. INTRODUCTION
There has been an increasing interest in many fields, including

geographic informations systems (GIS), finite element analysis, ge-
ological modeling, urban modeling and scientific visualization, in
discretizing the objects of interest as tetrahedral meshes. Tetrahe-
dral meshes tend to be large, with respect to triangle meshes used
as terrain models, since the number of tetrahedra in a mesh is ap-
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proximatively six times the number of vertices. Advances in sens-
ing technologies have enabled the acquisition of larger scientific
datasets with finer resolution, leading to new challenges in allocat-
ing resources for storing, processing and visualizing such meshes.
However, the faster rate of growth in processing power over mem-
ory favors reductions in global memory requirements at the expense
of (modest) increases in processing requirements.

Queries involving topological connectivity are fundamental for
many tasks which require local navigation on the mesh elements.
Examples include: visibility and viewshed operations, morpholog-
ical operations, segmentation and connected component determi-
nation, mesh analysis and repair, ray tracing/path following and
estimates of the discrete curvature, Laplacian, normal and gradient.

Such operations are typically accelerated through the use of a
topological data structure, that is, a data structure that supports
the efficient reconstruction of a subset of the local topological con-
nectivity of the mesh. Since applications on such datasets can dif-
fer greatly in their access patterns to the data, various data struc-
tures have been proposed to facilitate specific application-dependent
tasks. For example, line of sight algorithms are often optimized to
compute the adjacencies of the mesh elements, while curvature-
based algorithms are more concerned with the set of elements inci-
dent to a given point or edge in the mesh.

The major contribution of this work is a new data structure, the
PR-star octree, in which we obtain the local topological connectiv-
ity of a tetrahedral mesh through its spatial locality. In contrast to
previous topological data structures, which have focused on the ad-
jacencies or incidences of the mesh elements, we use a spatial data
structure on its embedding space to locally reconstruct the optimal
application-dependent topological representation at runtime using
the sorted geometry available from our spatial index. Thus, the in-
novative feature of our approach is in computing topology through
space: local spatial sorting allows the efficient reconstruction of
the local mesh connectivity. Although this increases the cost of a
single operation due to the construction of the local data structure,
this cost is amortized over multiple accesses to elements within the
same region. Moreover, by recovering the memory associated with
each local data structure after processing of that part of the mesh
has completed, we achieve significant memory savings with respect
to global topological data structures.

We demonstrate the effectiveness of this approach through sev-
eral typical applications on tetrahedral meshes including bound-
ary determination, i.e., computing the tetrahedra which are on the
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Figure 1: Regular refinement of a parent octree node generates
eight similar children nodes covering its domain.

boundary of the mesh, estimating 3D curvature, which is important
for meshes discretizing the domain of 3D scalar fields, and mesh
simplification.

The remainder of this paper is organized as follows. In Sections 2
and 3, we review background notions and related work. In Section 4,
we introduce the PR-star octree and discuss its properties, while in
Section 5, we evaluate its storage cost and compare it to a state of
the art compact topological data structure. In Section 6, we dis-
cuss the implementation of the fundamental queries on the PR-star
octree. In Section 7, we describe how to efficiently determine the
boundary of the mesh from the PR-star octree, while in Sections 8
and 9, we discuss applications of the PR-star octree to 3D curvature
computation and to mesh simplification, respectively. Finally, in
Section 10, we draw some concluding remarks.

2. BACKGROUND NOTIONS
The PR-star octree combines notions from the PR octree, a spa-

tial data structure over point datasets, with those of the indexed
representation for tetrahedral meshes.

2.1 The PR octree
An octree [13, 20] is a hierarchical domain decomposition based

on the nested refinement of a cube into eight cubes covering its
domain. The containment relation among such cubes defines a hi-
erarchical relationship among the set of nodes in the octree, where
a parent node’s eight children in the octree are the cubes generated
during its refinement. The root of an octree covers the entire cubic
domain and is the only node without a parent. Nodes with children
(i.e. refined cubes) are referred to as internal nodes of the octree,
while those without children are referred to as leaf nodes of the
octree. In the following, we focus on octrees generated by regular
refinement (i.e. region octrees), in which all eight children of a re-
fined node are similar and intersect at the midpoint of their parent’s
domain (see Figure 1).

A Point Region octree (PR octree) [20] is a spatial index on a
set of points in a three-dimensional domain. The domain decom-
position is controlled by a bucket threshold kv that determines the
maximum number of points that each leaf node of the octree can
index. A leaf node is considered full when it indexes kv points. In-
sertion of a new point into a full leaf node causes the node to split
and its indexed points to be redistributed among its eight children
nodes (see Figure 2 for an illustration in 2D). As such, the domain
decomposition of a PR octree depends only on the bucket threshold
kv, and is independent of the insertion order of its points [20].

2.2 Topological relations
An n-dimensional Euclidean simplex in R3 (n≤ 3) is the convex

hull of n+1 linearly independent points. In particular, a 0-simplex
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Figure 2: Insertion of a point (blue) into a full leaf node of a
PR octree (shown in 2D, with bucket threshold kv = 6) causes
the node to refine. (a) before insertion (b) after insertion.

is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle and a
3-simplex is a tetrahedron. A k-dimensional face of an n-simplex σ

is defined by any set of k+1 vertices of σ (0≤ k ≤ n).
A collection of tetrahedra T forms a tetrahedral mesh Σ when the

interiors of its tetrahedra are pairwise disjoint. A tetrahedral mesh
is conforming if the intersection of any two tetrahedra σ1 and σ2 in
T is either empty or is a common triangular face, edge or vertex of
σ1 and σ2.

Two simplices are incident in each other if one of them is a face
of the other, while they are k-adjacent if they share a k-face. For
simplicity, we refer to k-adjacent (k+1)-simplices and to vertices
incident in a common edge as adjacent.

The (combinatorial) boundary of a simplex σ is defined by the
set of its faces. The star of a simplex σ , denoted St(σ), is the set of
simplices in a tetrahedral mesh Σ that have σ as a face. The link of a
simplex σ , denoted Lk(σ), is the set of all the faces of the simplices
in St(σ) which are not incident in σ .

Queries on a tetrahedral mesh are often posed in terms of the
topological relations defined by the adjacencies and incidences of
its simplices. Let us consider a conforming tetrahedral mesh Σ and
a p-simplex σ ∈ Σ, with 0≤ p≤ 3.
Boundary relation Rp,q(σ), with 0≤ q < p, consists of the set of

q-simplices in Σ that are faces of σ .
Co-boundary relation Rp,q(σ), with p< q≤ 3, consists of the set

of q-simplices in Σ incident in σ .
Adjacency relation Rp,p(σ) consists of the set of p-simplices in

Σ that are adjacent to σ .
When the two types of simplex in a topological relation are speci-
fied, we can refer to the relation by their simplex types. For example,
the tetrahedra in the co-boundary of a given vertex v, R0,3(v) can be
referred to as the Vertex-Tetrahedra relation of v.

2.3 Indexed tetrahedral meshes
An indexed tetrahedral mesh is a common boundary-based data

structure for a tetrahedral mesh. It encodes the Tetrahedron-Vertex
relation, i.e., the relation among a tetrahedron and its four vertices.

It consists of two arrays: The vertices V , encode the geometry of
the mesh in terms of their coordinates in R3, while the tetrahedra T
are encoded in terms of the indices in V of their four vertices.

Since the indexed representation explicitly encodes R3,0 (i.e. the
Tetrahedron-Vertex relation), it supports the efficient extraction of
the boundary relations, but not the co-boundary or adjacency re-
lations. For example, to find the tetrahedron adjacent to a given
tetrahedron along one of its faces, we must (in the worst case) iter-
ate through the entire list of tetrahedra in T .

The Indexed data structure with Adjacencies (IA data structure)



[19, 18] extends the indexed representation by explicitly encoding
the Tetrahedron-Tetrahedra relation R3,3, i.e. the tetrahedra adja-
cent to the four faces of each tetrahedron. An extension to the IA
data structure, which we refer to as the extended IA data structure,
in which a single tetrahedron in the star of each vertex (i.e. a partial
Vertex-Tetrahedron relation R∗0,3) is also encoded, enables the effi-
cient extraction of all topological relations. In our comparisons, we
will evaluate the PR-star data structure against this extended version
of the IA data structure.

3. RELATED WORK
Hierarchical spatial indexes for points in the 3D Euclidean space

are provided by PR octrees and PR kd-trees [20]. In these indexes,
the shape of the tree is independent of the order in which the points
are inserted, and the points are only indexed by leaf nodes.

Some data structures have been proposed for spatial indexing of
polygonal maps (PM), including graphs, planar triangle meshes and
tetrahedral meshes. The PMR quadtree [17] is a spatial index for a
collection of edges in the plane (not necessarily forming a polygonal
map), and can be used for spatial objects in the plane [12]. The class
of PM quadtrees [21] extends the PR quadtree (which is for points
in the plane) to represent polygonal maps considered as a structured
collection of edges. There are three variations, namely the PM1
quadtree, the PM2 quadtree and the PM3 quadtree, which differ in
the criterion to define the content of a leaf node. They all maintain
a list of edges in the leaf nodes. In [5] we have extended the PM2
quadtree to produce a hierarchical spatial index for triangle meshes.
In this index, a node is a leaf if and only if either (a) it contains
one vertex, and all intersecting triangles are incident in that vertex,
or (b) it contains no vertex, and all intersecting triangles have a
common vertex lying outside the leaf node.

PM octrees are used to index the boundary of a polyhedral object
in space [2, 16, 20]. In particular, PM1-, PM2-, and PM3 octrees
have been proposed, where the subdivision rule is similar to the cor-
responding quadtrees but considers faces instead of edges. In [6],
we have developed a collection of spatial indexes for tetrahedral
meshes, that we call Tetrahedral trees. One tetrahedral tree extends
PMR quadtrees to the 3D case, where instead of edges we consider
tetrahedra, while the other extends the PM octree to the case of
tetrahedral meshes. Our approach is fundamentally and conceptu-
ally different from this previous work since the spatial hierarchy
is not a spatial index on the mesh (i.e. to support efficient spatial
queries such as point location), but it is a tool to support efficient
retrieval of topological connectivity (i.e. for topological queries),
thus encoding a minimum topology and trading spatial relations for
topological ones.

Other approaches utilize a spatial index to reduce the memory
requirements for out-of-core [4] or memory intensive mesh process-
ing [7]. Cignoni et al. [4] introduce an external memory spatial data
structure for processing large triangle meshes. Whereas, our aim
is to enable efficient topological operations on the mesh elements,
and thus we allow tetrahedra to be indexed more than once, the aim
of [4] is to support compact out-of-core processing of large triangle
meshes. As such, they only encode each triangle a single time, and
require explicit management of the mesh elements entirely resident
in memory (i.e. those with all incident vertices loaded in memory)
and the elements that are only partially resident in memory (i.e.
those with only a subset of the vertices loaded in memory). Dey et
al. [7] use an octree to index a large triangle mesh for localized De-
launay remeshing. Due to the significant overhead associated with
their computations, their octrees are very shallow, and contain very
few octree nodes (e.g. octrees with only eight nodes are typical in
their experiments).

Figure 3: A leaf node in a PR-star octree (shown in 2D with
bucket threshold kv = 6) encodes a set of vertices and all tetra-
hedra incident in those vertices.

Recently, Gurung et al. [11] introduced a compact version of
the extended IA data structure, which they call the Sorted Vertex
Opposite Table (SVOT) data structure. This data structure implicitly
encodes the partial Vertex-Tetrahedra relation R∗0,3 by rearranging
the order of the tetrahedra within the tetrahedra array T , and reduces
the size of the boundary relation R3,0 by reconstructing it through
a traversal along the adjacency relation R3,3. Since modifications
to the mesh require non-local reconstructions of the associated data
structures, this representation is more suitable for static meshes.

4. THE PR-STAR OCTREE
In this section, we introduce the PR-star octree as a spatio-topolo-

gical data structure for a tetrahedral mesh. In contrast to topological
data structures or to spatial data structures, our aim is to use the
spatial index induced by the octree to support efficient generation
of optimal application-dependent topological data structures at run-
time.

The PR-star octree combines the indexed tetrahedral mesh rep-
resentation (Section 2.3) with an augmented PR octree (see Sec-
tion 2.1) that also indexes the set of tetrahedra in the star of its
indexed vertices (see Figure 3). Thus, a PR-star octree over a tetra-
hedral mesh is represented using three entities:

• An array of vertices V , encoding the geometry of the mesh.

• An array of tetrahedra T . Each tetrahedron in T is encoded
in terms of the indices of its four vertices within V (e.g. the
Tetrahedron-Vertex boundary relation R3,0).

• An augmented PR octree N, whose leaf nodes index the set of
vertices within its domain, as well as the set of all tetrahedra
incident in these vertices.

We generate the PR-star octree from a tetrahedral mesh in three
phases. First, given a user-defined bucket threshold kv, we generate
a PR octree decomposition on the vertices V of the tetrahedral mesh.
Figure 4 shows spatial decompositions over the F117 dataset for
different values of kv. Note that lower values of kv lead to finer
spatial decompositions in octree N.

Next, we insert the tetrahedra of T into the leaf nodes of N that
index their vertices. That is, for each vertex v of a tetrahedron t,
we find the leaf node n of N that indexes v and add t to its list of
tetrahedra. As such, each tetrahedron appears in at least one leaf
node of N, and in at most four leaf nodes of N.

Finally, we exploit the spatial locality of N, by reindexing the
vertex array V and the tetrahedra array T . We do this by generating



(a) Tetrahedral mesh (b) kv = 200 (c) kv = 100 (d) kv = 50

Figure 4: PR-star octrees built over the F117 tetrahedral mesh (a) with varying bucket threshold values kv (b-d).

a new sorted vertex array V ’ in which the vertices are ordered ac-
cording to a depth-first traversal of the leaves of N. We then remap
the vertex indices of T from those of V to those of V ’. After this
stage, the leaf nodes of N index a contiguous range of vertices from
V ’ (which we will now refer to as V ), the internal nodes of N index
a contiguous range of vertices from V indexed by its descendants
and the tetrahedra in T are consistently indexed according to this
new ordering.

This enables a simpler representation for each leaf node of N.
Besides the hierarchical information associated with the octree (e.g.
pointers to the parent node and to the set of children nodes), each
leaf node encodes: the range of vertex indices vstart and vend in
V , requiring two integers, and a pointer to a list of tetrahedra in T
incident in these vertices.

5. EVALUATION OF STORAGE COSTS
We now discuss the storage costs of the PR-star octree represen-

tation and compare it to the cost of the extended IA data structure
presented in Section 2.3. In our comparisons, we will assume that
|T | ≈ 6|V |, which is a common assumption in scientific data visual-
ization since most of the data sets satisfy this relation.

Since the underlying data structure is the indexed tetrahedral
mesh representation, which is required in all cases, we first ana-
lyze this fixed component. The geometry of the mesh is associated
with the vertices of the mesh and requires three coordinates for each
vertex for a total of 3|V | space. The tetrahedra in T are encoded
through the Tetrahedron-Vertex boundary relation R3,0 in terms of
the indices of their vertices and require four vertex indices per tetra-
hedron for a total of 4|T | space. Thus, the total fixed cost of the
indexed tetrahedral mesh representation is

4|T |+3|V | ≈ 27|V |. (1)

Extended IA data structure.
In the extended IA data structure, the explicit topological in-

formation is encoded through the Tetrahedron-Tetrahedra relation
R3,3, requiring a total of 4|T | space, and through the partial Vertex-
Tetrahedron relation R∗0,3 requiring a total of |V | space. Thus, the
topological overhead of the extended IA data structure is

4|T |+ |V | ≈ 25|V |, (2)

and its total storage requirements are

8|T |+4|V | ≈ 52|V |. (3)

PR-star octree.
Let us analyze the data structure encoding the PR-star octree.

Each node of the octree requires: three pointers for the octree hier-
archy (i.e. one parent pointer, one pointer to a set of children and it
is pointed to by one parent), two vertex indices, indicating the range
of vertices indexed by the octree node, a pointer to a list of tetrahe-
dra incident in these vertices and the number of tetrahedra in this
list. This requires a total of 7|N| storage for the spatial indexing.

Recall that each tetrahedron in T is indexed by at least one, and
by at most four, leaf nodes in N. To determine the total space
required for the tetrahedron indices within the PR-star octree, we
denote the average number of octree nodes in which a tetrahedron
appears as χ , where 1≤ χ ≤ 4. Thus, the total storage for the lists
of tetrahedra in N is χ|T |. This gives a total topological overhead
for the PR-star data structure of χ|T |+7|N| space.

Based on our experiments, summarized in Table 1, we approxi-
mate χ ≈ 2. Also, since the decomposition is determined based on
the vertex bucket threshold kv we approximate the number of octree
nodes as |N| ≈ |V |/kv. Since we typically set kv to be greater than 7,
|N|< |V | (we approximate |N| ≈ |V | below). Thus, the topological
overhead for the PR-star is

χ|T |+7|N| ≈ 2|T |+(7/kv)|V | ≈ 13|V |, (4)

and its total space requirement are

(4+χ)|T |+3|V |+7|N| ≈ 40|V |. (5)

We observe that as kv increases, the topological overhead of the
PR-star data structure decreases, i.e. both |N| and χ decrease as kv
increases. For example, when kv ≈ 10, the spatial component 7|N|
requires |V|/1.4 space, while for kv ≈{20,50,100,200,400,600}, it
requires {|V |/3, |V |/7, |V |/14, |V |/28, |V |/57, |V |/86}, respectively.
Thus, in the worst case, when χ = 4 and kv ≥ 7, the PR-star requires
the same space as the extended IA, while in the best case, χ = 1,
the extended IA is larger than the PR-star octree by at least a factor
of 3|T |. On the other hand, as kv increases, the cost of generating
each local data structure (see Section 6) increases, so there is a
tradeoff between the number of nodes |N| and the size of each node
(represented through parameter kv).

Based on the estimates |T | ≈ 6|V | and χ ≈ 2, the PR-star octree
incurs approximately half of the topological overhead as the IA
(13|V | vs. 25|V |), and 80% of the total space of the extended IA
(40|V | vs. 52|V |).

Empirically, for tetrahedral meshes of varying complexity, we
found these estimates to favor the PR-star even more, as can be
seen in Table 1. As expected, the benefits of the PR-star octree
increase with the size of the mesh, and for increasing values of kv.



Table 1: Storage costs for PR-star octree and extended IA representations in terms of the number of vertices |V |, the number of
tetrahedra |T |, the vertex threshold kv, the number of octree nodes (total |N| and leaf |Nlea f |), and the average number of leaf nodes
in which a tetrahedron is indexed χ . Storage costs in the final four columns are expressed as multiples of |V |.

Mesh |V | |T | |T/V | kv |N| |Nlea f | χ
Overhead Total

IA PR-star IA PR-star

F117 48.5 K 240 K 4.94

10 18.0 K 15.5 K 3.30

20.80

16.57

43.59

39.37
20 9.27 K 8.05 K 2.95 14.66 37.45
50 4.61 K 4.02 K 2.59 12.82 35.62

100 2.18 K 1.90 K 2.20 10.91 33.71

POST 108 K 616 K 5.69

20 18.6 K 14.8 K 2.88

23.75

16.42

49.51

42.18
50 7,58 K 6.22 K 2.48 14.13 39.89

100 4.45 K 3.62 K 2.28 12.95 38.71
200 2.27 K 1.93 K 2.09 11.90 37.66

CAMEL_MC 243 K 997 K 4.11

20 51.2 K 41.1 K 2.67

17.45

11.07

36.89

30.51
50 23.9 K 19.6 K 2.22 9.13 28.57

100 12.0 K 9.84 K 1.89 7.77 27.21
200 6.44 K 5.35 K 1.67 6.86 26.31

FIGHTER_2 257 K 1.40 M 5.47

20 49.2 K 42.9 K 2.68

22.88

14.72

47.75

39.60
50 20.5 K 17.9 K 2.25 12.31 37.19

100 10.4 K 9.10 K 1.99 10.88 35.76
200 5.40 K 4.71 K 1.78 9.73 34.61

F16_DENSITY 1.12 M 6.35 M 5.64

200 23.6 K 20.6 K 1.90

23.57

10.70

49.14

36.27
400 12.6 K 11.0 K 1.71 9.68 35.25
600 7.92 K 6.91 K 1.60 9.04 34.61
800 5.94 K 5.18 K 1.54 8.71 34.28

6. GENERATING OPTIMAL LOCAL
TOPOLOGICAL DATA STRUCTURES

In this section, we outline a general strategy for computing local
topological data structures for the leaf nodes of a PR-star octree
which are optimized based on the requirements of the specific ap-
plication.

We locally process the tetrahedral mesh in a streaming manner by
iterating through the leaf nodes of the octree N. For each leaf node
n of N, we construct an application–dependent local data structure,
which we use to process the local geometry. After we finish pro-
cessing octree node n, we discard the local data structure and move
on to the next node.

The basic ingredients in every topological data structure is the
encoding of a suitable subset of the topological relations. Thus,
we outline the construction process for a few common example
applications.

For example, to build the local Vertex-Tetrahedra relation R0,3
for the vertices Vn in a node n, we iterate through the vertices of the
tetrahedra Tn in n. For each vertex v of a tetrahedron t indexed by
n, we add the index of t in T to the list of tetrahedra in the local star
of v (see Algorithm 1). Since the indexed vertices are contiguous
and there are at most kv vertices associated with leaf node n of N,
our local data structure is an array of size kv. Each position in the
array corresponds to a vertex indexed by n and points to an (initially
empty) list of indices from T .

To retrieve the local Tetrahedron-Tetrahedra adjacency relations
R3,3 for all the tetrahedra indexed by leaf node n, we iterate through
the four triangular faces of each of its tetrahedra (see Algorithm 2).

Algorithm 1 GENERATEVERTEXSTAR(n)

Require: n is a leaf node in octree N
Require: Vn are the vertices indexed by n
Require: Tn are the tetrahedra indexed by n
Require: Index Iv of vertex v ∈Vn→ vstart ≤ Iv < vend
Ensure: Relation R0,3 reconstructed ∀v ∈Vn
1: for all tetrahedra t in Tn (with index It in T ) do
2: for all vertices v in t (with index Iv in V ) do
3: if vstart ≤ Iv < vend then
4: Add It to list of tetrahedra in star of v

For a manifold tetrahedral mesh in R3, as we consider here, a tri-
angle can bound at most two tetrahedra. Faces with only a single
incident tetrahedron lie on the outer shell of the indexed domain, or
on the domain boundary.

If we are interested in the local edge-skeleton (i.e. the 1-skeleton
formed by the edges of the mesh) or face-skeleton (i.e. 2-skeleton)
of the mesh, we can easily reconstruct the Edge-Edge adjacencies
or the Triangle-Triangle adjacencies using a similar approach.

We can also generate relevant statistics using similar algorithms,
such as the number of vertices of a tetrahedron that are indexed
by the current node; the number of tetrahedra in the star of a ver-
tex or an edge; the number of triangles in the star of a vertex (or
equivalently, the number of edges in its link).

All such algorithms have time complexity that is O(|Tn|) or O(|Vn|),
where |Tn| and |Vn| are the number of tetrahedra or vertices indexed
by the current octree node n, respectively.



Algorithm 2 GENERATEADJACENCIES(n)

Require: n is a leaf node in octree N
Require: Vn are the vertices indexed by n
Require: Tn are the tetrahedra indexed by n
Require: Index Iv of vertex v ∈Vn→ vstart ≤ Iv < vend
Ensure: Relation R3,3 is locally reconstructed ∀t ∈ Tn

(perfectly reconstructed ∀t ∈ Tn with more than one vertex in n)
1: for all tetrahedra t in Tn (with index It in T ) do
2: for all vertices v in t (with index Iv in V ) do
3: Let fv be the face of t that is opposite vertex v
4: Add It to the pair of tetrahedra for face fv
5: for all faces fv with tetrahedra pair {t1, t2} for vertex v do
6: Set t1 as adjacent tetrahedron for t2 opposite vertex v
7: Set t2 as adjacent tetrahedron for t1 opposite vertex v

7. BOUNDARY DETERMINATION
Determining the elements on the boundary of a tetrahedral mesh

is an important subtask in many applications, including finite el-
ement analysis and curvature estimations, since the tetrahedra on
the boundary of the mesh require special processing. Additionally,
when simplifying a mesh, it is important to preserve the features of
the boundary as much as possible.

We describe here a simple local algorithm to differentiate the
boundary vertices from the interior vertices. In a manifold mesh,
the link of a vertex in the interior of the domain is homeomorphic to
a sphere while that of a boundary vertex is not. Since the majority of
the vertices are interior to the mesh, we prefer a data structure that
classifies vertices in O(1) time after the data structure is constructed,
i.e. where we do not need to traverse the data structure’s elements
in a second pass.

We utilize an Euler-type counting scheme to classify the vertices
as interior or boundary. For each vertex indexed by an octree node n,
we keep track of the faces in its star (which correspond to the edges
{e} in its link), as well as the tetrahedra in its star (which correspond
to the triangles {t} in its link). Since we assume that the mesh is
manifold, a vertex v is on the domain boundary when 2|e| 6= 3|t|.
Otherwise, it is in the interior of the domain. The motivation is
that if vertex v is in the interior of the domain, its triangulated link
is homeomorphic to a triangulation of the sphere and thus all the
edges in the link are shared by exactly two triangles.

Thus, constructing the data structure is in O(|Tn|) and boundary
determination requires O(|Vn|) time per leaf node. When applied to
the entire mesh, the algorithm requires O(χ|T |+ |V |) time, where χ

is the average number of nodes in which a tetrahedron appears. The
former terms comes from the construction phase, while the latter
term comes from the boundary determination. Since the storage
space is related to the number of tetrahedra indexed by a node, the
storage requirements for this algorithm are O(|Tn|) for each node,
which can be estimated as O(kv).

This boundary determination can be locally reconstructed when-
ever the application requires it, or the results can be stored globally.
In the latter case, we can store these in a separate bit array corre-
sponding to V , and requiring an additional |V | bits. Alternatively,
we can store the information in place in the tetrahedral array T , us-
ing a convention that a negative index for a vertex in T indicates
that the corresponding vertex is on the domain boundary.

8. DISCRETE CURVATURE ESTIMATION
In the case of terrain datasets, the elevation values for 2D samples

provide an embedding of the triangle mesh discretizing the domain

where the samples are distributed into 3D space, thus giving rise to
the Triangulated Irregular Network (TIN) model. Volume datasets
provide scalar field values at a set of points in 3D space, which
are triangulated through a tetrahedral mesh with vertices at these
points. The scalar values sampled at the 3D vertices of a tetrahedral
mesh describe the embedding of the tetrahedral mesh in 4D space
in a similar manner as we have a TIN in 3D space for 2D data.
Curvature plays an important role in the morphological analysis of
terrains [14], and its 3D counterpart [15] is crucial in understanding
the complexity of a volumetric scalar field through its embedding
in the 4D space. In the discrete setting, the curvature of a scalar
field is typically computed at the vertices of the mesh and is inter-
polated across the rest of the domain. Such computations involve
the geometry in the 1-ring of a vertex, i.e. the star of a vertex.

In this section, we consider the computation of discrete distortion,
a recent generalization of Aleksandrov’s concentrated curvature [1]
to tetrahedral shapes embedded in 4D space [15]. The distortion
at a vertex in a tetrahedral mesh embedded in 4D is the difference
between the sum of the solid angles in the elevated 4D space from
that of its solid angles in the (flat) 3D domain. As such, to calculate
the discrete distortion at a vertex, we need to iterate on the tetrahedra
in its star, and to know whether the vertex is on the domain boundary
(in which case, the sum of solid angles in the 3D domain is 2π , while
it is 4π for interior vertices, see [15] for details).

Note that when computing discrete curvature over the entire
dataset, we do not strictly need the topological connectivity, since
we must process every single tetrahedra in any event. However,
many applications require local curvature estimation of spatially co-
herent vertices. For example, in [8], the vertices in the 1-ring of an
edge are checked before and after a remeshing operation to locally
optimize a triangle mesh.

In Table 2, we compare the computation time for extracting the
Vertex-Tetrahedra (VT) relation for all vertices in the mesh repre-
sented as a PR-star octree or as an extended IA data structure, as
well as computation times for generating the distortion values from
both data structures. In the table, we specify absolute timings as
well as relative timings. We also specify the different values of
the bucket capacity kv (for the PR-star) on which we have experi-
mented.

Comparing the timings obtained by using the two data structure
for VT extraction on all vertices, we notice that extraction of the VT
relation from the PR-star is always faster than its extraction from
the extended IA data structure. The time requirement is between
50% (for smaller meshes) to 30% (for larger meshes) of that re-
quired for the extended IA data structure. This is due to our use of
an optimized local data structure that explicitly calculates the VT
relation and that we visit each tetrahedron an average of χ times
(i.e. the number of leaves which contain it). This is typically much
lower than the four times a tetrahedron is visited in the extended IA
data structure.

In contrast to the simple operation of building the star, the distor-
tion computation requires complicated geometric processing. For
example, we need to calculate the trihedral angle of the three faces
of a tetrahedron incident to the given vertex. By considering this
computation, in addition to the cost of traversing the octree, the PR-
star requires 30% to 50% more time than the extended IA for dis-
tortion computation on smaller meshes. For medium sized meshes,
the timings for the two structure are almost equivalent and for larger
meshes, the PR-star is approximately 20% faster that the IA. More-
over, since all computations are done locally on the PR-star octree,
it requires significantly less memory and resources as the the mesh
size increases.



Table 2: Timing comparisons (TIME column represents sec-
onds, while (%) column shows relative times) for extracting the
Vertex-Tetrahedra (VT) relation and for computing the distor-
tion from the extended IA and the PR-star octree for various
vertex threshold values (kv) on several tetrahedral meshes.

Mesh Structure kv
VT Distortion

Time (%) Time (%)

F117

IA – 0.12 – 0.27 –

PR-star

10 0.07 55 0.35 131
20 0.06 51 0.35 129
50 0.06 46 0.34 127

100 0.05 41 0.38 125

POST

IA – 0.23 – 0.57 –

PR-star

20 0.15 65 0.87 151
50 0.13 59 0.86 149

100 0.13 56 0.85 148
200 0.12 53 0.85 147

CAMEL_MC

IA – 0.94 – 2.65 –

PR-star

20 0.32 34 2.51 95
50 0.29 31 2.51 94

100 0.27 28 2.47 93
200 0.25 27 2.45 92

FIGHTER_2

IA – 1.16 – 2.12 –

PR-star

20 0.46 39 2.12 100
50 0.42 36 2.08 98

100 0.39 34 2.05 97
200 0.37 32 2.03 96

F16_DENSITY

IA – 6.25 – 11.10 –

PR-star

200 1.77 28 9.37 84
400 1.68 27 9.28 84
600 1.63 26 9.21 83
800 1.60 26 9.18 83

9. MESH SIMPLIFICATION
One of the major difficulties in processing tetrahedral meshes is

the large size of such meshes. In many situations, the meshes are
generated by a uniform process that is not adapted to the underlying
properties of the shape, and thus, the mesh is oversampled. Thus,
a typical preprocessing step for many downstream applications is
to simplify the mesh by reducing the number of its vertices and
tetrahedra. A common simplification approach is to iteratively apply
the edge collapse operator to the mesh elements. This consists
of contracting an edge of the mesh to a vertex. In the half-edge
collapse operation [3], an edge e = (v1,v2) is collapsed to one its
extreme vertices, e.g. v1.

In this section, we show how to implement the half-edge collapse
operator in the PR-star data structure. Half-edge collapse for an
edge e := {v1,v2} is a local operator, whose implementation re-
quires an efficient retrieval of the star of the two vertices v1 and v2
and the star of edge e. For any edge whose extreme vertices are
both indexed by an octree node, all of this information (star of both
vertices) is available. Our simplification algorithm incrementally
simplifies the local tetrahedral mesh within each octree node by suc-
cessively collapsing edges within the node until a quality threshold
is achieved. In our current implementation, we consider a simple
geometric quality of the edge (e.g. its length), and collapse from the
vertex with the higher vertex index into the vertex with the lower
vertex index. More advanced quality criteria, such as a priority

based ordering of edge-collapses that incorporate higher-order ge-
ometry, such as curvature or quadric error [10] should be easy to
incorporate.

Our algorithm imposes some restrictions on edge collapses [22].
The boundary condition ensures that the domain boundary is pre-
served as much as possible. We collapse only edges whose extreme
vertices are both on the interior of the mesh, or both on its boundary.
The geometric condition ensures that the orientation of its tetrahe-
dra are maintained during collapses. That is, we prevent tetrahedra
from flipping, since this would create invalid tetrahedra. Finally, the
topological condition (also referred to as the link condition) ensures
that the topological type of the mesh is preserved. In our case, this
ensures that non-manifold situations cannot arise in the dataset.

The half-edge collapse of edge e := (v1,v2) into vertex v1 is
performed as follows:

• Delete all the tetrahedra in St(e), the star of edge e.

• Add the tetrahedra from St(v2) to St(v1), and remove the
tetrahedra in the star of edge e:

St(v1) = St(v1)∪St(v2)−St(e).

• Modify the geometry of the vertices in St(v2), by replacing
v2 with v1.

• Clear the memory for St(v2) and delete vertex v2.

Our simplification algorithm on the PR-star octree performs a few
iterative stages. We first apply local simplifications to each octree
node and update the spatial index. Next, we compact the tetrahedral
mesh, and rebuild the spatial index. These three stages are repeated
until we remove at least an edge during the local simplification.

The local simplification algorithm operates on each leaf node n in
the octree N. We insert into a local queue Q all edges e := (v1,v2)
such that v1 and v2 are both indexed by octree node n and e is
shorter than a predetermined threshold. For each edge in queue
Q, the simplification criteria listed above (depending on boundary,
geometry and topology) are checked, and if these are satisfied, edge
e is simplified.

To determine the effect of the local edge collapse algorithm with
respect to the same algorithm on the entire dataset, we compare the
performance on a PR-star octree with practical values of kv with
that of a PR-star with kv set to infinity. In the latter case, the octree
N will have only a single leaf node (i.e. the root of N). In Table 3,
we compare the number of tetrahedra removed, the computation
times and the memory requirements to complete the simplification
procedure. As a proxy for the memory requirements, we consider
the maximum number of edges in the simplification queue Q.

We have conducted a series of experiments in which the stop-
ping criterion is based on the approximate percentage of tetrahedra
removed relative to the original mesh (e.g. 25%, 50% and 75%).
Comparing the results, we observe that for small meshes with rel-
atively low values of kv, many edges are contained in two octree
nodes and are therefore not eligible for simplification. For example,
on the F117 dataset with kv = 20, we were only able to remove 65%
of the tetrahedra compared to the global data structure (kv = ∞).
However, for larger meshes and larger values of kv, this was less
of a problem, and only 10-20% of tetrahedra were blocked by our
local algorithm.

Considering both timings and the percentage of tetrahedra re-
moved we can see that practical PR-star octrees perform worst when
the mesh is relatively small and we want to remove relatively few
tetrahedra. In this case, there are more tetrahedra shared between
multiple nodes, and the cost of building the index is more significant



Table 3: Comparison of timings (in seconds), the number of removed tetrahedra and memory requirements for our local half-edge
simplification for PR-star octree with different vertex bucket thresholds. Comparisons are to the PR-star octree consisting of a single
octree node (kv = ∞). The memory column considers the maximum size of the simplification edge queue as a proxy for the number
of bytes.

Approximately 25% of tetrahedra removed Approximately 50% of tetrahedra removed Approximately 75% of tetrahedra removed

mesh kv removed (%) timings (%) memory removed (%) timings (%) memory removed (%) timings (%) memory

F
11

7

∞ 68.7 K – 0.59 – 64.7 K 119 K – 1.06 – 262 K 175 K – 1.91 – 747 K
10 34.7 K 51 0.91 154 74 60.4 K 51 1.05 98 106 81.5 K 47 1.65 86 128
20 44.9 K 65 0.90 151 133 78.2 K 66 1.24 116 268 112 K 64 2.05 107 390
50 57.6 K 84 1.03 174 316 101 K 85 1.20 113 508 145 K 83 2.59 136 915

100 59.9 K 87 0.89 150 452 106 K 89 1.43 134 1.2 K 159 K 91 2.47 129 2.3 K

P
O

S
T

∞ 159 K – 0.93 – 94.4K 330.8K – 1.94 – 430 K 449 K – 4.48 – 1.34 M
20 151 K 95 1.61 173 210 315 K 95 1.96 101 286 435 K 97 2.99 67 388
50 156 K 98 1.26 136 456 325 K 98 2.19 113 791 443 K 99 3.70 83 929

100 157 K 98 1.27 136 625 326 K 99 2.09 107 1.4K 450 K 100 4.12 93 1.9 K
200 157 K 99 1.24 133 1.2 K 332 K 100 2.65 136 3.1K 451 K 101 4.49 100 4.5 K

C
A

M
E

L
_M

C ∞ 291 K – 14.59 – 1.49M 539.8K – 25.64 – 3.33 M 746 K – 37.96 – 5.39 M
20 237 K 82 7.94 54 557 422 K 78 12.93 50 566 551 K 74 15.20 40 569
50 263 K 91 7.94 55 1.6 K 474 K 88 10.94 43 1.8 K 642 K 86 15.16 40 1.8 K

100 274 K 94 8.58 59 3.2 K 497 K 92 12.24 48 4.4 K 674 K 90 16.06 42 3.6 K
200 284 K 97 7.66 52 6.8 K 515 K 95 12.03 47 6.9 K 704 K 94 16.93 45 8.1 K

FI
G

H
T

E
R

_2

∞ 362 K – 6.76 – 860.1K 821 K – 14.19 – 3.17 M 1.15 M – 20.80 – 6.35 M
20 265 K 73 8.96 132 313 633 K 77 12.68 89 618 899 K 78 17.21 83 618
50 295 K 82 8.04 119 1 K 684 K 83 12.72 90 1.3 K 997 K 86 19.92 96 1.5 K

100 314 K 87 7.06 104 1.9 K 733 K 89 12.46 88 2.4 K 1.04 M 90 21.69 104 2.8 K
200 317 K 88 7.07 105 2.9 K 753 K 92 14.19 100 5.6 K 1.08 M 93 22.94 110 6 K

F
16

_D
E

N
S

IT
Y ∞ 1.61 M – 43.13 – 4.05M 3.24M – 71.86 – 8.86 M 4.94 M – 134.62 – 21.0 M

200 1.40 M 87 45.62 106 5.6 K 2.93 M 91 56.92 79 5.7 K 4.50 M 91 89.42 66 6.2 K
400 1.48 M 92 46.75 108 9.5 K 2.97 M 92 61.98 86 10.4 K 4.64 M 94 93.72 67 12.9 K
600 1.50 M 93 41.92 97 16.6 K 2.99 M 92 58.88 82 18.3 K 4.67 M 94 94.97 71 19.5 K
800 1.50 M 93 36.84 85 21.3 K 3.04 M 94 55.43 77 23.8 K 4.69 M 95 93.57 70 24 K

relative to the simplification algorithm. Performance improves sig-
nificantly for larger meshes, where the auxiliary data structures (the
queues) are significantly smaller and their generation costs have a
much smaller effect.

In summary, the experiments show that using around 0.1% the
memory, and restricting edges to belong entirely to the current oc-
tree node we are able to remove most of the same edges (i.e. ≈
80–90%) in similar or less time.

In Figures 5 and 6 we show some details of two simplified meshes
obtained using our half edge collapse procedure. The images show
the original mesh and the simplified meshes with 75%, 50% and
25% of the tetrahedra.

10. CONCLUDING REMARKS
We have presented the PR-star octree as a novel spatial data struc-

ture optimized for performing efficient topological queries on large
tetrahedral meshes. Each leaf node of the PR-star octree encodes the
minimal amount of information necessary to locally reconstruct the
topological connectivity of its indexed elements. We have demon-
strated the advantages of the PR-star octree representation in several
applications, including detection of the domain boundaries, compu-
tation of local curvature estimates and mesh simplification.

In contrast to previous spatial indexing approaches, the PR-star is
not optimized for spatial queries such as point location. Rather, it is
optimized for spatially coherent topological queries on the dataset.
In contrast to topological data structures on tetrahedral meshes, we
are not forced into a choice of an initial data structure (possibly
optimized for a specific task) that must be used for all future appli-
cations. The spatial indexing enables the construction of the locally
optimal data structures for the given application. Due to the spa-

tial locality of successive queries in typical GIS applications, the
construction costs of these optimal local data structures at runtime
are amortized over multiple accesses while processing each node.
The experimental results clearly indicate the benefits of the PR-star
octree data structure for large tetrahedral meshes. As the mesh size
increases, the memory requirements of our data structure decrease
with respect to the an optimal data structure for the given task and
with respect to general state of the art topological data structures.

Although our reference implementation uses a pointer-based oc-
tree, it would not be difficult to switch to a linear octree represen-
tation [9] (i.e. to remove the internal nodes). Since the number of
internal nodes is about 1/8 the number of leaf nodes, and the over-
head for the number of octree nodes scales with the inverse of the
bucket threshold kv, this change will not likely save us that much
space (see Table 1), but may save us time in traversing the octree
during operations.

In our future work we are planning to investigate ways of tuning
the value of the bucket capacity kv to better fit the dataset. Addi-
tionally, algorithms that cache the expanded local data structures
for adjacent octree nodes can help us process geometry spanning
multiple octree nodes. For example, this would help us simplify
edges whose vertices are located in separate nodes. This will enable
the removal of the same edges as the single-node PR-star octree
while retaining the memory benefits associated with PR-star octrees
with higher values of kv.
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(a) Original mesh

(b) 25% of tetrahedra removed

(c) 50% of tetrahedra removed

(d) 75% of tetrahedra removed

Figure 5: Simplified versions of CAMEL_MC tetrahedral mesh
after applying our local edge-collapse procedure. Original
mesh (a) and mesh after removing 25% (b) 50% (c) and 75%
(d) of the tetrahedra.

(a) Original mesh

(b) 25% of tetrahedra removed

(c) 50% of tetrahedra removed

(d) 75% of tetrahedra removed

Figure 6: Simplified versions of FIGHTER_2 tetrahedral mesh
after applying our local edge-collapse procedure. Original
mesh (a) and mesh after removing 25% (b) 50% (c) and 75%
(d) of the tetrahedra.
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