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THE PR-STAR OCTREE: 



Motivation 

 Tetrahedral meshes 

 Increasingly important for analysis  

and visualization of scientific datasets 

 Captured/simulated  at  

increasingly fine resolution 

 Mesh connectivity 

 Important for many tasks that process the mesh 

 Navigation, visibility, morphology, discrete curvature estimates 

ray tracing/path following, simplification and repair, etc… 

 Expensive to encode 

 Representations typically are catered to needs of application 

 Processing rates (CPU/GPU) increasing faster than memory 

 Favor reductions in memory over those in computing 



PR-star Octree 
Contributions 

 “Topology through space” 

 Topological connectivity queries  

through spatial index on embedding space 

 Encode just enough information to enable efficient  

reconstruction of all topological relations 

 Allows optimal application-dependent  

local data structures to be generated at runtime 

 Construction costs amortized over multiple coherent queries 

 Streaming algorithms over dataset 

 Boundary determination,  local curvature estimates,  simplification 

 Many more… 
 

 Benefits of this representation increase with dataset size 

 



Related Work 

 Spatial data structures  

 Focus is on efficient spatial queries 

 e.g.  point location, (k)- nearest neighbor query 

 Points:  

 PR- quadtrees, octrees and kd-trees [Samet:2006] 

 Polygons, edges and graphs; Triangles:  

 PM-family of quadtrees –  PM1-,  PM2-,  PM3-, PMR-   

 Tetrahedral meshes [De Floriani et al.:2010] 

 Topological data structures 

 Focus is on efficient connectivity queries 

 Incidence-based – IG [Edelsbrunner:1987] 

 Adjacency-based – IA [Paoluzzi:1993;  Nielson:1997]  

 Spatial index on triangle mesh for out-of-core  

processing [Cignoni:2003] or for expensive processing [Dey et al.: 2010] 
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Applications 



Region Octrees 

 Hierarchical domain decomposition 

 Regular refinement 

 Each cubic parent node is replaced by 

eight children nodes covering its domain 

 Root node 

 Cubic node covering entire domain 

 Leaf node 

 Cubic node without children 

 Non-leaf nodes are called internal nodes 

Parent (1 pointer) 

Children (1 pointer) 



PR Octree: 
Point Region Octree 

 Region octree used as spatial index on a set of points 

 Points are uniquely indexed by a single leaf node 

 Bucket threshold kv  

 Used to decide when to split a node 

 Decomposition entirely dependent on kv 

 A node is considered full when it indexes kv points 

 Redistribute points to children upon insertion into full leaf node 

kv = 6 



PR Octree: 
Representation 

 An array of points in R3 – V 

 A set (array) of octree nodes – N  

 Each leaf node n in N indexes the set  

of at most kv points from V that lie within its domain 



Topological Connectivity Relations 

 Fundamental connectivity primitives for mesh elements 
 

Boundary relations – Rp,q (p<q) 

 Set of q-simplices that are a face of a given p-simplex 

 e.g.  R3,0 is the Tetrahedron-Vertex relation 

 

Co-boundary relations – Rq,p (p<q) 

 Set of simplices that have a given simplex as a face 

 e.g.  R0,3 is the Vertex-Tetrahedron relation 

 The tetrahedra in the star of v 
 

Adjacency relations – Rp,p  

 Set of p-simplices that adjacent to a given simplex  

along a p-1 face (p>0) or an edge (p=0) 

 e.g.  R3,3 is the Tetrahedron-Tetrahedron relation 

R2,3 

R3,2 
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Topological Data Structures 

 Explicitly encode a subset of the topological relations 

 Implicitly encode a (larger) subset of the relations 

 Reconstruct relevant neighborhoods from  

encoded relations at runtime 
 

 Application-dependent data formulations 

 Incidence-based data structures 

 e.g. Incidence Graph  [Edelsbrunner:1987] 

 Adjacency-based data structures 

 e.g. Indexed data structure with Adjacency (IA)  [Paoluzzi et al:1993] 

 

 Adjacency-based data structures more compact when we 

are mainly interested in top cells [DeFloriani and Hui : 2006] 



Indexed tetrahedral mesh 

 Array of vertices V 

 Each vertex vi encodes a position (x,y,z) 

and possibly other attributes 

 Array of tetrahedra T 

 Each tetrahedron tj encodes the index  

in V of its vertices and possibly other attributes 

vi = {x, y, z} 

ti = {iv0, iv1, iv2, iv3} 

R3,0 



IA data structure:  
Indexed tetrahedral mesh with Adjacencies 

 Array of vertices V 

 Encodes position of each vertex 

 Encodes a single incident tetrahedron in T 

 Array of tetrahedra T 

 Encodes indices of four vertices in V 

 Encodes indices of four adjacent tetrahedra in T 

                   it0  

ti ={           }  iv0, iv1, iv2, iv3 

  it0, it1, it2, it3 

R3,0 

R3,3 

vi = {x, y, z,     } 



PR-star Octree 

 “Topology through space” 

 A spatial data structure for querying topological connectivity 
 

 Augment PR octree with the set of tetrahedra  

from the mesh that are incident in its vertices 

 i.e.  the tetrahedra in the star of its vertices 



Generation of PR-star 
Three steps 

 Input is soup of tetrahedra defining a tetrahedral mesh Σ 
 

Step 1: Vertices 

 Create a PR octree N on vertices V of mesh 

 Based on user selected bucket threshold kv 
 

Step 2: Tetrahedra 

 Add tetrahedra T to appropriate leaf nodes of N 
 

Step 3: Spatial sort 

 Reorganize V and T based on spatial sorting induced by N 

 Each node in N  indexes a contiguous range of vertices in V  

 Can be encoded via two indices vstart and vend  

 For T we store a pointer to a list of tetrahedra indices 



PR-star Octree 
Representation 

Encodes: geometry of the mesh                   [3 pointers] 

Encodes: four indices inV of its vertices        [4 pointers] 

Encodes: hierarchical octree information              [3 pointers] 

             range of vertices (vstart ,vend )                [2 pointers] 

             pointer to list of incident tetrahedra       [2 pointers] 



PR-star Octree 
Representation 

Encodes: geometry of the mesh                   [3 pointers] 

Encodes: four indices inV of its vertices        [4 pointers] 

Encodes: hierarchical octree information              [3 pointers] 

             range of vertices (vstart ,vend )                [2 pointers] 

             pointer to list of incident tetrahedra       [2 pointers] 

Lists of tetrahedra: 
 

  Each tetrahedron appears in 

•    At least one octree node 

•    At most four octree nodes 

 

χ – Average number of lists in which 

a tetrahedron appears, where 

 

                        1 ≤  χ  ≤ 4 



Evaluation 

 Indexed Tetrahedral Mesh Representation 

 Fixed cost of both data structures 

 Total          4|T| + 3|V|  ~ 27|V| 
 

 IA data structure (extended)  

 Topological:   4 |T| + 3|V|   ~ 25|V| 

 Total:      8 |T| + 4|V|  ~ 52|V| 
 

 PR-star data structure 

 Topological:    χ |T| + 7|N|  ~ 13|V| 

 Total:       8 |T| + 4|V|  ~ 40|V| 

Simplifying assumptions: (see paper for details) 

  |T| ~ 6 |V|  |N| ~ |V| / kv    χ ~ 2        kv  ≥ 7 

Comparison 

~50% topological 

~80% total storage 



PR-star Octree: 
Example 

 F117 tetrahedral mesh 

 |V| = 48.5 K  

 |T| = 240 K 

 IA storage:  (20.8; 43.6) 

 

kv = 50 

  χ = 2.6; |N| = 4 K 

 Storage: (12.8; 35.6) 

kv = 100 

  χ = 2.2; |N| = 1.9 K 

 Storage: (10.9; 33.7) 

kv = 200 

  χ = 2.0; |N| = 1.4 K 

Storage: (10.0 ; 32.8) 



Applications of PR-star 
General Strategy 

 Streaming algorithm  

 Iterate through octree nodes 

 

 For each leaf octree node 

 Step 1: Build application-dependent local data structure 

 Step 2: Process mesh locally 

 Step 3: Discard local data structure 

 

 Cost of building data structures is amortized over 

multiple local operations 



Local discrete curvature estimates 

 For terrain 

 Elevations at samples in 2D domain  

provide embedding  as 3D TIN 

 Curvature is concentrated in vertices 

 Depends on geometry of its star 

 e.g.  angle deficit between 2D and 3D [Aleksandrov:1957] 

 

 For volume data 

 Scalar values at samples in 3D domain 

provide embedding as 4D hypersurface 

 Curvature is concentrated in vertices 

 Depends on geometry of its star 

 e.g.  angle deficit between 3D and 4D [Mesmoudi et al.:2008] 
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Results 
Timings for generating VT and distortion 

 Compared to IA data structure 

 

 Key observations 

 Building VT is always faster for PR-star 

 Amortized cost over entire mesh 

 For small meshes with small kv  

 Distortion computation is faster with IA 

 Value of χ plays a dominant role here 

 As mesh size increases, and as kv increases 

 Distortion is faster with PR-star 

 

 Trend: Effectiveness of PR-star increases with mesh size 



Application 
Mesh simplification 

 Many mesh generation processes oversample the field 

 Simplification algorithms are critical to downstream 

processing but are resource intensive 

 Local mesh modifications require neighborhoods of vertices 

 Better results are obtained by ordering the simplifications 



Local simplification 
Half-edge collapse 

 Simplify edge e: (w,v) 

 Requires: 

 VT relation for vertex v 

 VT relation for vertex w 

 ET relation for edge e 

 Steps: 

1. Delete tetrahedra in ET – applies to T 

2. Modify vertices of tetrahedra in VT(v) – applies to V 

3. Delete vertex v – applies to V 

4. Add tetrahedra in VT(v) to VT(w) and remove ET(e) 

 applies to local data structure 

5. Remove VT(v) – applies to local data structure 

 



Simplification Algorithm 

 Repeat the following until there is not change 

 

 ALGORITHM: SIMPLIFYMESH() 

 for each node n of N 

 Generate VT relation of all vertices vn 

 Enqueue all edges to be checked for collapse 

 while ( queue is not empty ) 

 Edge e = top element of queue 

 if (e passes test for simplification) 

 EDGECOLLAPSE (e) 

 

 SIMPLIFYOCTREE( N )   // by merging sibling leaf nodes 



Results 

 Compare PR-star with different kv values 

 Special case: kv = ∞ 

 Octree only has a single node 

 

 Summary: 

 Similar simplification results 

 Around the same number of tetrahedra removed 

 In around the same amount of time (± 20%) 

 using < 1% of the memory 

 

 

Trend:  Better results for larger meshes and larger values of kv 

 



Discussion 

 Introduced PR-star Octree for tetrahedral meshes 

 Spatio-Topological approach  

 Spatial index “for free” 

 One of the difficulties in topological data structures  

on spatial data is finding the initial vertices 

 Simple global data structure 

 Optimal local data structures 

 Not forced to decide in advance which operations  

(e.g. incidence, adjacency) to optimize 

 Efficiently build the data structure at runtime 

without worrying (too much) about memory consumption 

 Results improve with increased mesh resolution 



Limitations 

 Only works for spatial meshes 

 Use traditional topological data structure  

for abstract complexes 

 

 Does not replace spatial data structures 

 Not optimized for general spatial queries 

 E.g. point location (find tetrahedron containing a point) 

 Use PM-family of meshes here 

 But can handle range queries 



Future work 

 Tuning for parameter kv 

 Preliminary results: kv ~ 600-800 appears to be the sweet spot 

 Significantly smaller octrees 

 More time to build the local data structures  

but less time to traverse the octree 

 Not “too much” extra time to generate the local data structure 

 Cache-based algorithms for non-local processing of mesh 

 e.g.  simplification of edges spanning two octree nodes 

 Use a cache of expanded nodes 

 Preliminary results: Around 2% of nodes is sufficient for best results 

 Exploit inherent parallelism of data structure 



Thank you 
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