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Figure 1: Overview our scheme for tetrahedral meshes (illustrated in 2D). (a) We interpret the Morse complex of a simplicial
mesh in terms of the primal mesh Σ (solid lines) and its dual Σd (dashed lines). (b) Encoding the Discrete Morse gradient field
entirely with the tetrahedra enables the use of compact topological data structures for morphological extraction. We associate
the descending Morse complexes with the cells of Σ (c-d), the ascending Morse complexes with the cells of Σd (e-f) and the
Morse-Smale complex with the dually subdivided tetrahedral mesh ΣS (g), whose hexahedral cells are defined by a tetrahedron
and one of its vertices. All relations are encoded strictly in terms of the vertices and tetrahedra of Σ.

Abstract
We consider the problem of computing discrete Morse and Morse-Smale complexes on an unstructured tetrahedral
mesh discretizing the domain of a 3D scalar field. We use a duality argument to define the cells of the descending
Morse complex in terms of the supplied (primal) tetrahedral mesh and those of the ascending complex in terms
of its dual mesh. The Morse-Smale complex is then described combinatorially as collections of cells from the
intersection of the primal and dual meshes. We introduce a simple compact encoding for discrete vector fields
attached to the mesh tetrahedra that is suitable for combination with any topological data structure encoding just
the vertices and tetrahedra of the mesh. We demonstrate the effectiveness and scalability of our approach over
large unstructured tetrahedral meshes by developing algorithms for computing the discrete gradient field and for
extracting the cells of the Morse and Morse-Smale complexes. We compare implementations of our approach on an
adjacency-based topological data structure and on the PR-star octree, a compact spatio-topological data structure.

1. Introduction

Topological methods rooted in Morse theory [Mil63] have
gained increasing importance in the analysis and visualiza-
tion of scalar fields, due to their ability to extract essential
morphological features through decompositions of the field
domain into regions of influence of the critical points of the

field, called Morse and Morse-Smale (MS) complexes. How-
ever, Morse theory applies to smooth functions, while in prac-
tical applications we often deal with scalar fields that are reg-
ularly or irregularly sampled at discrete locations within a do-
main. Forman [For98] has developed a discrete analogue of
Morse theory for cell complexes. Since this approach is com-
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pletely combinatorial, it avoids computing derivatives and
is beneficial in the presence of noise in the data. However,
despite the applicability of Forman theory to very general
discretized domains, memory constraints on the encoding of
the discrete Morse gradient field have limited its practical use
to scalar fields defined over regular square and cubic grids.

Our work concentrates on computing discrete Morse and
Morse-Smale complexes on unstructured tetrahedral meshes
discretizing the domain of a 3D scalar field. Since Forman’s
discrete gradient field is defined on all the simplices of the
mesh, a natural representation for the mesh would be the In-
cidence graph (IG) [Ede87] (implicitly encoded for regular
grids [GBHP08, GSW12, GRWH12]). When encoding un-
structured tetrahedral meshes, the IG can be verbose, since it
explicitly encodes all vertices, edges, faces and tetrahedra in
the mesh plus several topological connectivity relations. On
the contrary, data structures which encode only the vertices
and the tetrahedra [PBCF93, GR09] have been shown to be
much more compact [CDW11]. Here, we introduce a com-
pact encoding for discrete vector fields which is only based
on the tetrahedra, and is therefore suitable for combination
with any such mesh representation. Moreover, we propose
an implementation for the PR-star octree [WFDV11], which
derives the local connectivity of the mesh through a spatial
index on the mesh geometry. Thus, by trading a reasonable
amount of computation at runtime, all connectivity relations
can be compactly encoded. A benefit of this approach is that
the spatial index provides a means of understanding the spa-
tial embedding of the mesh and its associated fields.

Another contribution of our work is our expression of
the primal/dual relationship between the descending and as-
cending Morse complexes in terms of the supplied simpli-
cial mesh Σ, and its dual mesh Σd . Furthermore, we ex-
press the combinatorial structure of the MS complex (crys-
tals in 3D, quads in 2D) as collection of cells in the mesh
obtained by the intersection of Σ and Σd , which we refer
to as the dually subdivided mesh ΣS. This leads to a com-
pact encoding of these complexes in terms of only the ver-
tices and tetrahedra of the primal mesh. In this way, we
can efficiently express morphological structures of the scalar
field, such as the regions of influence of critical points (i.e.
the maxima, minima, and saddles), the arcs of the extrema
graphs (the graphs connecting the maxima with 2-saddles
and the minima with 1-saddles [CLB11]) and the 1-skeleton
of the Morse-Smale complex (the graph connecting all criti-
cal points). See [GKK∗12] for a definition of these features
in terms of the Morse and MS complexes.

We extend the algorithm of Robins et al. [RWS11] for
discrete Morse gradient computation to simplicial meshes
with irregular connectivity and we implement it both on the
PR-star octree and on a compact tetrahedron-based topologi-
cal data structure. We develop algorithms for computing the
cells of the Morse complexes, and compare the performance
of these data structures.

2. Background notions

Let f be a C2 real-valued function (scalar field) defined over
a d-dimensional manifold M. A point p ∈ M is a critical
point of f if the gradient vanishes at p. Function f is said
to be a Morse function if the Hessian matrix Hp f of the sec-
ond derivatives of f at a critical point p is non-singular. The
number of negative eigenvalues of Hp f is called the index
of critical point p. For d = 3, there are four types of critical
points, namely minima, 1-saddles, 2-saddles and maxima.

An integral line of a function f is a maximal path that
is everywhere tangent to its gradient. Integral lines that con-
verge to a critical point p of index i cover an i-cell, called the
descending manifold of p. Dually, integral lines that originate
at p cover a (d− i)-cell, called the ascending manifold of p.
The descending manifolds decompose M into a cell complex,
called the descending Morse complex of f on M, while the
ascending manifolds form the ascending Morse complex of f
on M. A Morse function f is a Morse-Smale function if inter-
secting descending and ascending manifolds are transversal.
The connected components of the intersection of descending
and ascending cells of a Morse-Smale function f decompose
M into a Morse-Smale (MS) complex.

The discrete Morse theory due to Forman [For98] is an ele-
gant adaptation of classical Morse theory to functions defined
over a cell complex in which most of the main results from
Morse theory are valid. This goal is achieved by considering
a function F defined on all cells of the complex (i.e. not only
on its vertices). Here, we define it for a simplicial mesh Σ,
i.e. for a cell complex in which all the cells are simplices. A
function F is a discrete Morse function if for any p-simplex
σ, all its facets (the (p−1)-simplices on its boundary) have a
lower F value and all its cofacets (the (p+1)-simplices in its
co-boundary) have a higher F value, with at most one excep-
tion. If there is such an exception, it defines a pairing of cells
called a discrete gradient vector. Otherwise, p-simplex σ is
a critical simplex of index p. The collection of such discrete
gradient vectors is referred to as the discrete Morse gradient
field, which we denote as V .

As noted by Forman, it is simpler to define a discrete
Morse gradient vector field than a discrete Morse function. In-
tuitively, a discrete vector field can be viewed as a collection
of arrows, connecting a p-simplex of mesh Σ to an incident
(p+1)-simplex in such a way that each simplex is a head, or
a tail of at most one arrow and the critical simplices are nei-
ther the head nor the tail of any arrow. A discrete vector field
V is a discrete gradient field if there are no closed V -paths in
V, where a V -path is a sequence σ0,τ0,σ1,τ1, ...,σr+1 of p-
simplices σi and (p+1)-simplices τ j, such that σi and σi+1
are distinct facets of τi, and (σi,τi) are paired in V.

For each discrete Morse function F, a discrete gradient
vector field V can be constructed by pairing any p-simplex
σ and (p+1)-simplex τ in its co-boundary (denoted τ� σ)
whenever F(τ)≤ F(σ).
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3. Related work

There have been a few approaches to extend the results of
Morse theory and to represent Morse and Morse-Smale com-
plexes in the discrete case. One is based on Banchoff’s exten-
sion [Ban70] of Morse theory to piecewise-linear manifolds
and functions [Ban70, EHZ01, EHNP03]. A survey on algo-
rithms based on this approach and on the watershed approach
can be found in [BDF∗08].

Recently, a lot of attention has been devoted to algo-
rithms rooted in discrete Morse theory [For98] (see Sec-
tion 2), leading to the formulation of robust discrete algo-
rithms [CCL03, LLT04, GBHP08, GSW12, KKN05, RWS11,
SN12, SSN12] for computing Morse and MS complexes. Al-
gorithms based on discrete theory have been developed for
regular grids [RWS11, GBHP08] or for triangle and tetrahe-
dral meshes of limited size [KKN05]. Parallel algorithms for
computing 2D and 3D Morse-Smale complexes for large 2D
and 3D structured meshes are presented in [SN12, SSN12].
In [GSW12, GRWH12], a memory-efficient implementation
of [RWS11] is presented and applied to 3D scalar fields de-
fined over regular grids for efficient persistent homology
computation and as the basis for extending the estimation
of persistence from critical points to extremal lines and sur-
faces. Algorithms that produce more accurate geometry and,
thus, correct connectivity for the MS complex are discussed
in [GBP12], also in the context of regular grids. The rela-
tionship between the piecewise linear and combinatorial ap-
proaches to discrete Morse theory is discussed in [Lew12].

A variety of hierarchical spatial indexes have been pro-
posed for points, polygonal maps, boundary representations
of objects and triangle meshes [Sam06]. Such indexes con-
tain the geometrical objects only in their leaf nodes and, thus,
the shape of the tree is independent of the order in which the
points are inserted. In [DFM10], a family of spatial indexes
for tetrahedral meshes, called tetrahedral trees, has been in-
troduced which generalizes similar data structures for maps
and triangle meshes to 3D. A fundamentally and conceptu-
ally different data structure for tetrahedral meshes, called the
PR-star octree [WFDV11], uses the spatial embedding of the
mesh to index its topological connectivity (see Section 7).
This data structure was used to extract morphological fea-
tures from terrain and volume datasets in [DFIW12] using a
streaming implementation of Robins et al.’s gradient compu-
tation. They used a primal-only approach to extract a subset
of the features and did not propose a compact encoding for
the gradient vector field.

4. Encoding the discrete Morse gradient vector field

We introduce a new encoding for discrete vector fields de-
fined over irregular tetrahedral meshes in which information
is attached only to the tetrahedra. Thus, it is well suited to be
used in connection with any topological data structure which
explicitly encodes only the vertices and the tetrahedra of the

mesh [PBCF93,GR09,WFDV11]. We use this encoding as a
compact representation for the discrete Morse gradient field
of a discrete Morse function defined over the mesh.

Let us consider a tetrahedral mesh Σ and a tetrahedron τ

in Σ. Our encoding associates with τ a subset of the discrete
vector pairs involving its faces. Specifically, it encodes all
vector pairs (σi,σ j) where σi and σ j are both faces of τ, as
well as the pairs (σi,τ

′) from a triangular facet σi of τ to its
adjacent tetrahedron τ

′ along σi in Σ.

Recall that a tetrahedron τ has
( 4

i+1
)

faces of dimension i,
and each face has (i+1) facets. Since each edge, triangle or
tetrahedron of τ can be paired with any of its facets, there are

4

∑
i=1

(
4

i+1

)
· (i+1) = 6 ·2+4 ·3+1 ·4 = 28

possible discrete vector pairs in the restriction of vector field
V to τ (see Figure 3a). Adding the four additional vector pairs
from a facet σ of τ to an adjacent tetrahedron gives a total of
32 possible discrete vector field pairings. We refer to this col-
lection of pairs from the discrete vector field V in the vicinity
of tetrahedron τ as a local frame of the discrete vector field.
Since each such pairing within a local frame encodes a single
bit of information (i.e. the presence or absence of that partic-
ular pairing), we can encode each local frame using 32 bit
flags per tetrahedron. This bit flag representation simplifies
testing for the presence of vector pairings as well as updates
to the discrete vector field.

We next observe that the restrictions imposed by discrete
vector fields (i.e. that each simplex can be involved in at most
one pairing) imply that there are significantly fewer valid lo-
cal frame configurations than the 232 possibilities provided
by the bit flag representation. In fact, for the 28 possible in-
terior pairings, there are only 14,721 valid configurations,
and for the full local frame containing 32 possible pairings
there are only 51,030 valid cases. Thus we can encode a com-
pressed local frame using only two bytes per tetrahedron in
the mesh. To facilitate easy conversion between the two rep-
resentations, we encode two small auxiliary lookup tables: an
array EXPANDFRAME[·] of 51,030 bit flag entries (encoded
using four bytes) and a map COMPRESSFRAME[·] from the
51,030 valid bit flags to the compressed local frame represen-
tation (encoded as unsigned short).

Note, that the local frame representation is redundant.
Each pairing involving a triangle face is encoded twice (i.e.
once for each tetrahedra in its co-boundary) and the pairings
involving a vertex and an edge e are encoded within the lo-
cal frame of each tetrahedron in the star of e. However, we
exploit the fixed size of the simplex boundary relations to
achieve our compact representation.

5. Primal/dual representations

In this section, we present an interpretation of the Morse and
Morse-Smale (MS) complexes in terms of the provided tetra-
hedral mesh and its dual mesh. We use this interpretation to
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(a) 3p – 0d (b) 2p – 1d (c) 1p – 2d (d) 0p – 3d

Figure 2: The primal/dual relationships in a tetrahedral
mesh. Each dual cell id (gray) is an i-polytope contained
within the star (blue) of its corresponding primal k-simplex
kp (green), where i+ k = 3.

define an efficient encoding for these complexes and their
individual cells. We denote the primal tetrahedral mesh as
Σ. The dual mesh of Σ, which we denote as Σd , is a polyhe-
dral mesh in which the 0-cells (vertices) correspond to the
tetrahedra of Σ (Figure 2a), the 1-cells (edges) correspond to
the triangles of Σ (Figure 2b), the 2-cells to the edges of Σ

(Figure 2c) and the 3-cells to the vertices of Σ (Figure 2d).

5.1. Representing ascending and descending manifolds

Using the above correspondences, we observe that the k-
saddles of the Morse function correspond to k-simplices in
the primal mesh Σ and to (d− k)-cells in the dual mesh Σd .
See Figure 1b for an example in 2D, where minima (blue)
are associated with vertices of the triangle mesh, and hence,
2-cells of the dual mesh; saddles (green) are associated with
edges of the mesh, and hence edges of the dual mesh; and
maxima (red) are associated with triangles of the mesh, and
hence, vertices of the dual mesh. Therefore, the descend-
ing Morse complex consists of elements from the primal
mesh, while the ascending Morse complex consists of ele-
ments from the dual mesh. Specifically:

• A descending 3-manifold corresponds to a maximum, and
thus to a collection of (primal) tetrahedra. Dually, an as-
cending 3-manifold corresponds to a minimum, and thus
to a collection of dual 3-cells (i.e., primal vertices).
• A descending 2-manifold corresponds to a 2-saddle, and

thus to a collection of primal triangles, each of which can
be expressed as a pair of primal tetrahedra (see Figure 2b).
An ascending 2-manifold corresponds to a 1-saddle, and
thus to a collection of dual 2-cells, each of which can
be expressed as a pair of dual 3-cells, corresponding to a
primal edge (see Figure 2c).
• A descending 1-manifold corresponds to a 1-saddle and

thus to a sequence of primal edges, or, equivalently, as a
sequence of primal vertices (see Figure 2c). An ascend-
ing 1-manifold corresponds to a 2-saddle and thus to a
sequence of dual edges, which can be seen as a pair of
dual vertices (i.e., as a sequence of primal tetrahedra).

Figure 1(c–f) illustrates the above observations for a dis-
crete Morse function defined on a triangle mesh, where the

(a) (b)

Figure 3: A dually-subdivided tetrahedron τ (a) is decom-
posed into four hexahedra (b), each defined by a vertex of τ

(black) and interior points from each incident face within τ.

descending 2-manifolds (Figure 1c) are collections of trian-
gles from Σ associated with the maxima (red critical points),
while the ascending 2-manifolds (Figure 1e) are collections
of dual 2-cells (corresponding to vertices from Σ) associated
with the minima (blue critical points). Similarly, the descend-
ing (Figure 1d) and ascending 1-manifolds (Figure 1f) corre-
spond to collections of primal and dual edges, respectively,
associated with the saddles (green critical points).

Note that all the descending and ascending manifolds are
expressed entirely in terms of tetrahedra and vertices. This is
a relevant issue from an implementation point of view, since
there is no need to encode the primal edges and triangles, and
of course no need for encoding the dual mesh.

This encoding can be generalized to arbitrary dimension d,
where each manifold of the Morse complex can be described
in terms of collections of cells of uniform dimension from
the primal or dual mesh, each of which can be expressed
using at most d(d +1)/2e vertices or d-simplices.

5.2. Representing the cells of the MS complex

We define the dually subdivided mesh, denoted as ΣS, as the
mesh obtained by the intersection of the primal mesh Σ and
its dual Σd (see Figure 1a for a 2D example). Each 3-cell
of ΣS is the intersection of a tetrahedron τ and of a dual 3-
cell (corresponding to a vertex). This defines a hexahedron,
which we refer to as a micro-hex, whose boundary consists of
six quadrilateral micro-quads and twelve micro-edges. Thus,
a tetrahedron τ in Σ is decomposed into four hexahedra in ΣS,
each corresponding to a vertex of τ (see Figure 3).

Similarly, a triangle σ in primal mesh Σ is decomposed
into three micro-quads in ΣS, namely those micro-quads cor-
responding to the three vertices of σ in the two tetrahedra of
Σ sharing σ. An edge e in Σ is the union of two micro-edges
in ΣS belonging to the micro-hexes forming the tetrahedra
incident in e and corresponding to its endpoints.

A micro-hex, being the intersection of a tetrahedron τ and
a 3-cell in the dual mesh (a vertex v in the primal mesh), is
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(a) (b)

Figure 4: Geometrical representation of a Morse-Smale com-
plex computed on a synthetic dataset. (a) Filtered view of the
(macro) MS complex 3-cells (unique colors) composed of a
set of micro-hexahedra. (b) The MS 2-cells bounded by the
MS 1-skeleton. Each 2-cell is composed of a set of micro-
quads and is bounded by 1-cells (saddle connectors).

encoded as a pair (τ,v). A micro-quad γ in ΣS separates two
hexahedral cells, which can either share a tetrahedron τ or
a vertex v, depending on whether they are part of the same
primal tetrahedron or the same dual 3-cell (corresponding to
v). This leads to an encoding for γ either as a triple (τ,v1,v2),
where v1 and v2 are the vertices of τ defining the two hexa-
hedral cells (which are pairs (τ,v1) and (τ,v2)), or as a triple
(τ1,τ2,v), where τ1 and τ2 are the two tetrahedra defining
the two hexahedral cells (which are pairs (τ1,v) and (τ2,v)).

The (macro) cells of the MS complex consist of elements
from the dually subdivided mesh ΣS. A 3-cell in the MS
complex is a collection of micro-hexes. A 2-cell α of the MS
complex is a collection of micro-quads on the boundary of
the two macro 3-cells of the MS complex sharing α. Figure 4
illustrates the geometrical representation of an MS complex
on a synthetic dataset.

The 1-cells of the MS complex are of the following three
types and are all sequences of micro-edges in ΣS.

Minimum–1-saddle connector: Each micro-edge in the se-
quence connects a primal vertex and edge. Thus, the con-
nector is formed by primal edges, and can be encoded as a
sequence of primal vertices, where the last two vertices de-
fine the critical edge. In Figure 3 the black edges connect
primal vertices (black dots) to primal edges (blue dots).

Maximum–2-saddle connector: Each micro-edge in the
sequence connects a primal tetrahedron and face (i.e. a
dual vertex and edge). Thus, the connector is formed by
a sequence of dual vertices and is encoded as a sequence
of primal tetrahedra. In Figure 3, the green edges connect
primal tetrahedra (red dot) to primal faces (green dots).

Saddle–connector: Each micro-edge in the sequence con-
nects a primal triangle and edge (or, dually, a dual edge
and 2-cell). In Figure 3, the blue edges connect primal
edges (blue dots) to primal faces (green dots). We encode
it as a sequence of primal triangles, whose first triangle
is critical and whose last two intersect in the critical edge.

Note that a saddle connector is not a subset of 1-cells of
the ascending or descending Morse complexes.

Figure 1g concludes our 2D example by illustrating the
Morse-Smale complex associated with the discrete Morse
gradient field of Figure 1b. Note that each micro-quad is
defined by the intersection of a triangle (a primal 2-cell) and
a dual 2-cell associated with one of its boundary vertices,
and that each (macro) 2-cell of the MS complex is defined
by a maximum (red critical point), a minimum (blue critical
point) and two saddles (green critical points).

6. Extracting morphological features

In this section, we discuss how to retrieve the cells of the
Morse complexes (i.e. the descending and ascending mani-
folds), the cells of the MS complex, and the combinatorial
structure of the 1-skeleton of the MS complex from a tetrahe-
dral mesh Σ endowed with a local discrete gradient field, en-
coded as in Section 4. These structures are the basis for com-
puting morphological features of 3D scalar fields [GKK∗12].
We discuss how to extract the descending and ascending
manifolds based on the simplices of the primal mesh Σ and
the topological relations involved. Generally speaking, a de-
scending or ascending i-manifold is extracted by traversing
the primal/dual mesh following the pairings of the gradient
field, and starting from the i-simplex corresponding to the
critical point associated with the i-manifold. The resulting
manifolds are encoded as discussed in Section 5.

A descending 3-manifold for a maximum pmax is com-
puted by starting from the critical tetrahedron τ correspond-
ing to pmax and following all paired simplices of V from the
boundary triangles of τ into its adjacent tetrahedra. It is en-
coded as a label attached to the tetrahedra forming it. Dually,
an ascending 3-manifold for a minimum pmin is computed
by starting from the critical primal vertex v (corresponding
to a dual 3-cell) and following all paired simplices of V from
the co-boundary edges of v to its adjacent vertices in Σ (i.e. it
traverses into adjacent dual 3-cells paired in V ). It is encoded
as a label attached to the primal vertices forming it.

A descending 2-manifold for a 2-saddle p2s is computed
by starting from the critical triangle σ corresponding to p2s
and following all paired simplices in V from boundary edges
of σ to its adjacent triangles. Dually, an ascending 2-manifold
for a 1-saddle p1s is computed by starting from the criti-
cal primal edge ε corresponding to p1s (corresponding to
a dual 2-cell), and following all gradient arrows from the
co-boundary triangles of ε to their boundary edges (i.e. it
traverses along the adjacencies of dual 2-cells).

A descending 1-manifold for a 1-saddle p1s is com-
puted using the same relations as for ascending 3-manifolds,
and similarly for ascending 1-manifolds and descending 3-
manifolds. In both cases, duality reverses the roles of bound-
ary and co-boundary.

c© 2013 The Author(s)
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Note that for all traversals, we can view the discrete gra-
dient field as a directed acyclic graph (DAG), whose root
is the critical i-cell, whose nodes are i-cells in Σ or Σd , and
whose arcs are the subset of the adjacent i-cells from the
mesh paired in V along boundary facets. Since triangles in
the primal mesh are in the co-boundary of at most two tetra-
hedra, and edges have at most two boundary vertices, their
DAGs are degenerate (i.e. they are rooted trees) and no addi-
tional bookkeeping is required. However, for the 2-manifold
extractions, visited triangles and edges need to be marked as
we traverse the arcs of the DAG.

A 3-cell of the MS complex corresponds to a pair (pmax,
pmin) of critical points and is encoded as a collection of
micro-hexes in the dually subdivided mesh ΣS obtained by
intersecting the descending 3-cell (for pmax) and the ascend-
ing 3-cell (for pmin), which are collections of tetrahedra and
primal vertices, respectively. It is computed by collecting all
pairs (τ,v), where τ is labeled with pmax and v with pmin.

A 2-cell in the MS complex corresponds to a saddle pair
(p2s, p1s) and it is a collection of micro-quads. For each pair
of face-adjacent micro-hexes, both containing p2s and p1s on
their boundary, the common micro-quad is part of the MS
2-cell if the labels of the two hexahedra are different.

The MS 1-cells corresponding to a maximum-2-saddle, or
a minimum 1-saddle, are the ascending and descending 1-
manifolds, respectively. A saddle connector, which connects
a 1-saddle p1s and a 2-saddle p2s is computed by extracting
the descending and ascending 2-manifolds associated with
p1s and p2s. The descending 2-manifold extraction is per-
formed first, and all the traversed triangles are marked as
visited. We then start from the critical primal edge ε corre-
sponding to p1s and its adjacent edges. Among the triangles
shared by ε and its adjacent edges, only the triangles previ-
ously marked as visited are considered. We then apply the
same process as for extracting ascending 2-manifolds.

The combinatorial structure of the MS complex is a graph
in which the nodes correspond to the critical points (sim-
plices in Σ) and the arcs to the adjacencies of these points
on the 1-skeleton of the MS complex. We observe that this
is also the incidence graph representation of either Morse
complex. Thus, the extraction is performed by computing
all the manifolds in one of the two complexes, for instance,
the descending complex, saving one node for each critical
simplex and connecting two nodes in the graph with an arc
if there is a path in the discrete gradient connecting the two
corresponding critical simplices.

7. PR-star octree implementation

In contrast to topological data structures, which explicitly en-
code the connectivity among mesh elements, or to spatial in-
dexes, which index the elements for efficient location-based
queries, a PR-star octree [WFDV11] uses the spatial index
induced by an octree to efficiently generate local application-
dependent topological data structures at runtime. Here, we

briefly describe the PR-star octree and discuss the extrac-
tion of the morphological features discussed in Section 6 on
the PR-star octree. The computation of the discrete Morse
gradient on the PR-star octree is performed by extending to
simplicial meshes encoded in a PR-star octree the algorithm
in [RWS11], which requires the computation of the tetrahe-
dra incident in each vertex, a particularly efficient operation
on the PR-star octree.

The PR-star octree is based on the Point Region octree
(PR octree) [Sam06], a spatial index on a set of irregularly
distributed points P. The domain decomposition is controlled
by a single parameter, that we denote as kv, which determines
the maximum number of points indexed by a leaf node. The
insertion of a new point into a full leaf in the tree causes the
leaf to split and its indexed points to be redistributed among
its children. Thus, the domain decomposition induced by a
PR octree is independent of the insertion order of its points.

The PR-star octree for a tetrahedral mesh Σ encodes the
vertices and the tetrahedra of Σ and consists of (a) an array P
of vertices, encoding the geometry of Σ; (b) an array T of in-
dexed tetrahedra, where each element is encoded in terms of
the indices of its four vertices within P; and (c) an augmented
PR octree N, whose leaf nodes index a subset of vertices from
P, as well as all tetrahedra in T incident in these vertices.

We use a more compact representation for the leaves of
the PR-star octree compared with the one in [WFDV11], by
exploiting the spatial locality provided by the octree through
a reindexing of arrays P and T . Besides the hierarchical infor-
mation associated with the octree (e.g. pointers to the parent
node and to the set of children nodes), each leaf node Nl
encodes: the range of indices vstart and vend in P of the ver-
tices contained in Nl ; the range of indices tstart and tend in T
of the tetrahedra that are completely contained in Nl ; and a
pointer to the list of the remaining tetrahedra from T incident
in these vertices. i.e. each such tetrahedron has at least one
vertex inside and outside the domain of Nl .

The basic paradigm for performing operations on a mesh
encoded as a PR-star octree is to locally process the mesh
in a streaming manner by iterating through the leaf nodes of
the octree. For each leaf node, a local application-dependent
data structure, which we refer to as an expanded leaf node
is generated and used to process the local geometry. After
we finish processing a leaf node, we discard this local
data structure and move on to the next leaf node. For
efficiency, we use an auxiliary cache LRU-CACHE based
on a least-recent-used replacement policy that maintains a
subset of expanded leaf nodes. Since connectivity relations
are reconstructed within leaf nodes, the PR-star is ideally
suited for situations in which the geometry will be processed
in batches. In such cases, the connectivity reconstruction
costs can be amortized over multiple mesh processing
operations and a more verbose application-dependent local
data structure can be utilized.
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For morphological feature extraction, we locally recon-
struct a subset of the topological connectivity relations
among the elements of the simplicial mesh Σ. Since the gra-
dient information is associated with tetrahedra, we encode all
expanded relations in terms of tetrahedra in the co-boundary:

• Descending 3-manifolds and ascending 1-manifolds uti-
lize the Tetrahedron-Tetrahedron (TT) adjacency relation.
For the PR-star, we expand the Face-Tetrahedron (FT) re-
lations for all triangles inside the leaf node, i.e. the two
tetrahedra sharing a given triangle. We use the convention
that the first tetrahedron associated with a triangle σ in the
FT relation is the one paired with σ in V (or σ is critical).
• Ascending 3-manifolds and descending 1-manifolds uti-

lize the Vertex-Vertex (VV) relation. Instead, we expand
the Vertex-Tetrahedron relation, i.e. the set of tetrahedra
incident in each vertex inside the leaf node and use the
convention that, for a vertex v, the first such tetrahedron
contains the edge paired with v (or v is critical).
• Descending 2-manifolds utilize the Face-Face (FF) rela-

tion. We encode the Edge-Tetrahedron (ET) relation and
use the convention that, for an edge e, the first encoded
tetrahedron contains a face paired with e (or e is critical).
• Ascending 2-manifolds utilize the Edge-Edge(EE) rela-

tion. We expand the ET relation for all edges e in the leaf
node, with the convention that the first tetrahedron in the
list contains the triangle paired with e.

Following the PR-star conventions, we extract all ascend-
ing or descending i-manifolds, with a fixed i, during a traver-
sal of the octree. When computing an i-manifold, we traverse
the mesh inside a leaf node and expand the current path only
within the current leaf node and the cached leaf nodes. When
we need to process simplices that are outside the current and
cached nodes, we interrupt the current path, which we refer to
as a dangling path. The information needed to complete the
path, e.g., the indices within P or T of the path to continue,
are saved in an auxiliary data structure.

8. Experimental results

We have evaluated the performance of our discrete gradient
encoding and morphological feature extraction algorithms
through implementations of several data structures: the In-
dexed data structure with Adjacencies (IA) [PBCF93], an op-
timized version of the IA that encodes additional information
about the edges (IAET ) and the PR-star octree. We present ex-
periments on five tetrahedral meshes whose sizes vary from 6
to 30 million tetrahedra. The semi-regular meshes (BONSAI,
VISMALE, FOOT) were extracted from a regular grid us-
ing Regular Simplex Bisection [WD11] and irregularized
through a half edge collapse-based simplification process
that removed approximately 15% of the vertices. We also
simplified about 10% of the vertices of irregular dataset SAN

FERNANDO to remove ‘flat’ regions (i.e. regions with very
low persistence) from the mesh, yielding a more meaningful
feature extraction.

The IA data structure explicitly encodes, for each tetra-
hedron, the indices of its four vertices and of its four face-
adjacent tetrahedra (the TT relation), as well as the index of
one incident tetrahedron per vertex. Since each vertex v must
reference a single (arbitrary) incident tetrahedron, we use the
convention that the encoded tetrahedron either contains the
edge that is paired with v in V , or v is critical. We find this
tetrahedron during our gradient vector field generation. This
optimization accelerates the descending 1-manifold and the
ascending 3-manifold extraction steps without any impact
on storage cost. We also noticed room for optimization in
the descending 2-manifold extraction by using a similar trick
to encode the Edge-Face gradient relation. That is, for each
edge e paired with a face, we encode a single tetrahedron
whose gradient contains the face pointed to by e. We refer to
the IA data structure with this optimization as IAET .

We first compare the IA data structure enhanced with the
gradient encoding of Section 4 with the Incidence Graph
(IG), which is the natural choice for encoding cell complexes
endowed with a discrete Morse gradient field. In addition to
encoding all simplices of the input tetrahedral mesh, the IG
encodes, for each i-simplex σ, the indices of all its facets
and cofacets. The discrete gradient field can then be directly
encoded with one additional bit for each node and arc of the
IG. Encoding the IG with gradient attached to all simplices
requires about four times as much space as the IA with gra-
dient attached to the tetrahedra. For our largest datasets, the
storage cost for the IG are almost 6 GB.

Next, we evaluate both the storage costs of the underlying
data structures (IA data structure and PR-star octree) as well
as the storage costs and time requirements for computing the
gradient on each of them (seeTable 1). We use the same en-
coding for the gradient field on the IA data structures and on
the PR-star octree, as discussed in Section 4. For the sake of
brevity, we report only a single value of kv for each dataset.
In general, increasing the value of kv reduces the overall stor-
age requirements but increases its local storage requirements
and connectivity reconstruction times.

8.1. Gradient field generation

Our implementations of the gradient field computation on
the data structures share the same encoding but differ in their
connectivity reconstruction algorithms. In all cases, we have
adapted the algorithm by Robins et al. [RWS11] from regu-
lar grids to simplicial meshes. Since the PR-star octree effi-
ciently reconstructs the local connectivity for the entire sub-
mesh indexed by a leaf node, rather than for each individual
vertex (as in the IA) it is able to compute the gradient field
in about half the time (see column GRADIENT in Table 1).

For storage comparisons, we considered the topological
(connectivity) overhead of the data structures. The IA re-
quires about the same amount of information for connec-
tivity as it does for the base mesh (P and T arrays), the IAET
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Table 1: Absolute and relative timings (in seconds) and storage costs (expressed in MBs) for the implementations based on the
PR-star octree and the two version based on the IA (with and without the ET* relation explicitly stored). The first two datasets
are irregular tetrahedral meshes, while the final three are irregularized tetrahedral meshes derived from regular grids.

Data set |T | kv

Storage Timing

Mesh Connectivity Max total Gradient Descending Ascending Total

tot % tot % tot % tot % tot % tot %

F16 6.35M
IA

114
115 – 231 – 206.85 – 56.64 – 133.88 – 397.37 –

IAET 189 164 305 132 212.13 102 23.45 40 133.88 100 369.47 92
800 38 33 178 77 100.67 49 313.30 549 591.92 442 1005.89 253

SAN FERNANDO 12.4M
IA

223
225 – 448 – 358.02 – 6.90 – 260.89 – 625.81 –

IAET 370 164 593 134 362.97 101 2.48 29 260.89 100 626.34 100
800 68 30 329 73 186.27 52 89.85 1286 728.69 279 1004.81 161

BONSAI
24.4M

IA
437

445 – 823 – 732.76 – 75.23 – 147.61 – 955.60 –
IAET 723 162 1101 134 748.19 102 15.96 21 147.61 100 911.76 95
800 130 29 577 70 370.31 50 309.33 412 353.97 240 1033.61 108

VISMALE 26.5M
IA

475
484 – 959 – 796.68 – 113.75 – 217.87 – 1128.30 –

IAET 786 162 1261 131 809.64 102 22.19 19 217.87 100 1049.70 93
800 141 29 725 76 400.85 50 288.44 253 355.59 163 1044.88 92

FOOT 29.5M
IA

527
541 – 1068 – 868.29 – 138.78 – 201.60 – 1208.67 –

IAET 875 162 1402 131 892.89 103 27.15 19 201.60 100 1121.64 93
800 164 30 691 65 454.52 52 699.86 504 395.69 196 1550.07 128

requires about 1.6 times as much space, and the PR-star re-
quires less than a third of the storage. (see column CONNEC-
TIVITY in Table 1). In terms of overall storage requirements,
which includes the base mesh, gradient, topological overhead
and auxiliary data structures, the PR-star requires about 30%
less storage space than the IA, while the IAET requires about
30% more space.

8.2. Feature extraction

All data structures require a small amount of additional mem-
ory to perform feature extraction. The IA requires a global
queue to perform the graph traversal of the gradient field,
while the PR-star utilizes a cache of octree nodes with ex-
panded connectivity information, as well as a list of dangling
paths for each visited leaf node. We have experimented with
different sizes for the PR-star’s LRU-CACHE in an attempt
to balance the size of cache with the overhead of reconstruct-
ing the connectivity within each expanded octree node. We
found that for the datasets derived from regular grids, a fixed
cache size of 100 yields optimal results, while for the irregu-
lar datasets, optimal performance was achieved with a cache
of around 300 expanded nodes. We believe that this is due to
the less regular access patterns induced by the features within
the irregular datasets. For both data structures, this additional
storage was negligible (0.01%–0.1% the size of the mesh).

As can be seen in Table 1, the IA data structures perform
best on descending manifold extraction, where the relevant
topological connectivity relations are explicitly encoded. Fur-
thermore, the ET* optimization in IAET accelerates the 2-
manifold extractions, reducing the overall extraction times
for descending manifolds to 20%–40% that of IA. In contrast,

since the PR-star needs to explicitly reconstruct these rela-
tions, it can take several times as long to extract the descend-
ing manifolds (see column DESCENDING). The timings are
significantly closer for the ascending manifold extractions
(see column ASCENDING), where the connectivity relations
need to be extracted for all data structures. Overall, the PR-
star is the smallest data structure, but requires additional time
to reconstruct the connectivity of the mesh at runtime.

Figure 5 illustrates features extracted from the BUCKY

dataset, including the 3-cells of the MS complex, the inter-
section of ascending and descending cells of the Morse com-
plexes, the 1-skeleton of the Morse-Smale complex and its
combinatorial structure. Note that many arcs of the extracted
1-skeleton are shared (Figure 5a), while they are explicit in
the combinatorial representation (Figure 5d) (compare the
lower left corners).

9. Concluding remarks

We have presented a primal/dual interpretation of the de-
scending and ascending Morse manifolds in terms of sim-
plices of the primal tetrahedral mesh associated with a 3D
scalar field and of the cells of its dual mesh. The MS complex
was described combinatorially as collections of cells from
the dually subdivided mesh. This lead to simple descriptions
of morphological features in terms of only the vertices and
tetrahedra of the primal mesh.

We have also proposed a compact encoding of discrete
vector fields using the local frame representation, which as-
sociates information with the tetrahedra in the primal mesh,
and which we apply to the discrete Morse gradient field. A

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



K. Weiss & F. Iuricich & R. Fellegara & L. De Floriani / A primal/dual representation for discrete Morse complexes

(a) (b) (c) (d)

Figure 5: Example of features extracted from the BUCKY dataset. (a) The Morse-Smale 1-manifolds: maxima–2-saddle
connectors (red), 2-saddle–1-saddle connectors (green) and 1-saddle–minima connectors (blue). (b) The Morse-Smale 3-cells,
thresholded by region sizes to highlight the larger 3-cells decomposing the inner spheres. (c) The intersection of 3-cells from
the ascending (blue) and descending (red) Morse complexes, filtered to highlight 3-cells decomposing the inner spheres. (d) The
graph representing the combinatorial structure of the MS complex.

further analysis of this representation through the lens of
our primal/dual interpretation reveals that the discrete vector
field is a labeling of the 1-skeleton of the dually-subdivided
mesh ΣS. In this interpretation, there is a one-to-one corre-
spondence between the nodes of ΣS’s 1-skeleton and the sim-
plices of Σ, and between the edges of ΣS’s 1-skeleton and the
incidence relations of Σ whose dimensions differ by one (i.e.
the relations encoded in the Incidence Graph). The discrete
vector field restrictions discussed in Section 2 imply that reg-
ular nodes in the 1-skeleton have valence one and critical
nodes have valence zero. This interpretation opens the pos-
sibility of extending our representation to more general cell
complexes, such as irregular hexahedral meshes.

The proposed gradient encoding on the IA data structure is
a very compact alternative to the IG, which is the common en-
coding of cell complexes endowed with Forman gradient. We
have shown that an even greater savings has been achieved
by using the PR-star octree, at the expense of some additional
computation, Alternatively, by explicitly encoding more rela-
tions, as in the IAET , we can achieve faster extraction times.

Both our vector field encoding and our formulation of mor-
phological features are independent of the topological data
structure used to encode the mesh (as long as it encodes the
vertices and the tetrahedra), of the method in which the gra-
dient field is computed and of the algorithms used for feature
extraction. Thus, we anticipate our approach benefiting from
theoretical advances in data structures on the one hand and
in computational topology on the other.

Due to the high degree of independence of the individual
calculations for computing the gradient field and for feature
extraction, we are currently looking into parallel and out-
of-core extensions to our data structures and algorithms. A
preliminary OpenMP extension of our IA implementation on
our 3.2 GHz Intel i7 quad-core testing machine achieved a
2–3x speedup compared to our single core results presented

in Table 1. For the PR-star, we are looking into using the
implicit ordering on the vertices (as discussed in Section 7),
to enable processing the mesh in parallel.

We are currently implementing an algorithm for
persistence-based simplification, which is based on the sim-
plification operators in [ČD11], expressed in terms of gra-
dient field simplification. Persistence-based simplification
will allow us to extract morphological features, such as the
various manifolds, the extrema graphs (which are formed
by the ascending and descending 1-manifolds) and the 1-
skeleton of the MS complex at different levels of persistence,
as in [GKK∗12]. It can also remove the need for the prepro-
cessing mesh simplification step (as discussed in Section 8).

In our future work, we plan to use a modified PR-star
octree to encode the extracted i-manifolds, or the MS cells,
which would allow us to reconstruct the topological connec-
tivity of the various complexes as well as to efficiently per-
form spatial queries on them. Our approach can also be ex-
tended to time-varying datasets defined on simplicial meshes,
and to tetrahedral shapes in 4D space (such as isosurfaces of
time-varying fields), since the PR-star octree, the gradient
encoding and the feature extraction are all dimension inde-
pendent.
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