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Figure 1: Left: Variable-resolution terrain extracted from the Puget Sound dataset at a fixed viewpoint (textured and wireframe).
Right: Alternate view of the same mesh illustrating the view-dependent triangulation and error metric on the mesh vertices.

Abstract
We present parallel algorithms for processing, extracting and rendering adaptively sampled regular terrain
datasets represented as a multiresolution model defined by a super-square-based diamond hierarchy. This model
represents a terrain as a nested triangle mesh generated through a series of longest edge bisections and encoded
in an implicit hierarchical structure, which clusters triangles into diamonds and diamonds into super-squares. We
decompose the problem into three parallel algorithms for performing: generation of the diamond hierarchy from
a regularly distributed terrain dataset, selective refinement on the diamond hierarchy and generation of the corre-
sponding crack-free triangle mesh for processing and rendering. We avoid the data transfer bottleneck common to
previous approaches by processing all data entirely on the GPU. We demonstrate that this parallel approach can
be successfully applied to interactive terrain visualization with a high tessellation quality on commodity GPUs.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations. I.3.6 [Computer Graphics]: Methodology
and Techniques—Graphics data structures and data types. I.3.m [Computer Graphics]: Misc.—Parallel rendering.

1. Introduction

Advances in computing hardware in recent years have
shifted from improvements in the speeds of individual pro-
cessors to increases in the number of cores on systems with
multiple programmable processing units. This requires effi-

† yalcin@cs.umd.edu
‡ kweiss@cs.umd.edu
§ deflo@disi.unige.it

cient parallel algorithms to take advantage of the increased
computing power. This is especially the case for graphics
hardware, where GPUs now have hundreds of cores power-
ing thousands of lightweight threads that allow data and task
parallelism in a highly programmable environment.

Interactive terrain rendering and processing has had con-
tinuing interest over the past several decades in many diverse
fields including Geographic Information Systems (GIS),
computer graphics, and scientific visualization (see [PG07]
for a recent comprehensive survey). The increasing size of
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available terrain datasets, made possible by improved sens-
ing technologies, necessitates a multiresolution terrain rep-
resentation from which conforming, i.e. crack-free, adap-
tive meshes can be interactively extracted and processed.
Such extractions are driven by an application–specific pred-
icate, referred to as a selection criterion, that can be tested
against the nodes of the multiresolution model to determine
if they contribute to the currently extracted mesh. A popu-
lar refinement operator for generating multiresolution mod-
els from regularly sampled datasets is longest edge bisec-
tion. In this scheme, isosceles right triangles are bisected
along the midpoints of their hypotenuse into two similar tri-
angles. Since pairs of triangles sharing a common longest
edge, referred to as diamonds, need to be bisected concur-
rently to maintain a crack-free adaptive mesh, diamond-
based representations have been a popular multiresolution
model over such datasets. The use of the diamond prim-
itive enables an implicit encoding of all hierarchical and
geometric relationships among the elements of the hierar-
chy [Paj98, HDJ05, WD08].

Terrain datasets are typically provided as regularly sam-
pled grids of elevation values. This regularity has led to the
development of efficient parallel algorithms for processing,
visualization and analysis. Many recent approaches make
use of a CPU-resident coarse-grained multiresolution data
structure, where each macro update on the CPU is asso-
ciated with a batched update to the underlying triangula-
tion data consisting of many triangles optimized for effi-
cient streaming and rendering on the GPU [Pom00, Lev02,
CGG∗03,HDJ05,BGP09,LKES09]. These approaches typi-
cally require a hierarchical selection criterion in the form of
an approximation error that has been saturated, i.e. the error
associated with each node in the hierarchy must be greater
than those of its descendants. This requires an expensive
preprocessing stage, and can restrict the number of differ-
ent meshes which can be extracted. Moreover, any modifica-
tions to the data can invalidate the error metric, requiring a
new calculation over large portions of the dataset.

Here, we explore an alternative approach based on fine-
grained updates to datasets that are entirely GPU-resident.
To this aim, we use a diamond-based model and show how
to generate the multiresolution terrain model and how to
perform selective refinement on the model, thus extracting
crack-free meshes. This constitutes the basis for a system
for terrain modeling, analysis and rendering on the GPU. In
particular, our system enables the use of an arbitrary (i.e. un-
saturated) predicate as a selection criterion, as illustrated in
Figure 1. We consider parallel rendering as a first application
of our GPU-based multiresolution framework, although we
intend to apply this framework to other terrain processing
problems, such as parallel watershed and erosion analysis
and visibility queries, on the extracted meshes.

Thus, we focus on the three primary problems: (a) paral-
lel generation of the diamond-based multiresolution model,

that is, computing the approximation error for each diamond;
(b) parallel selective refinement, which requires the applica-
tion of the selection criterion to the mesh elements in parallel
followed by a parallel closure operation to ensure the extrac-
tion of crack-free meshes; and (c) generating and rendering
the corresponding triangle mesh in parallel.

Our system provides a coherent and integral fine-grained
approach multiresolution terrain processing directly on the
GPU using the OpenCL API. Although current implemen-
tations of OpenCL have not been fully optimized compared
to shader languages (e.g. HLSL, GLSL) or platform specific
languages such as CUDA, our system achieves real time per-
formance on 2k×2k datasets and interactive performance on
4k × 4k datasets using commodity GPUs. We expect these
results to improve as the OpenCL language matures.

The remainder of the paper is organized as follows. In
Section 2, we review related work, and in Section 3, we re-
view a multiresolution terrain model built on diamonds. In
Section 4, we provide an overview of our approach. In Sec-
tion 5, we describe the generation of the diamond hierarchy.
In the next three sections, we describe the three phases of our
selective refinement approach, namely, the error evaluation
on the diamonds (Section 6), the closure of the dependency
relation (Section 7) and the generation of the corresponding
triangle mesh (Section 8). We discuss performance results in
Section 9. Finally, in Section 10, we draw some concluding
remarks and discuss current and future work.

2. Related work

In this section, we review related work on multiresolution
terrain processing of large datasets and on parallel process-
ing algorithms for such datasets.

Multiresolution modeling of terrains has been an active
area of research over the past several decades, intially in
GISs and in terrain rendering for the development of geo-
browsers, video games and flight simulators. The various
approaches have been based on irregular triangle meshes
(TINs) and more recently on nested triangle hierarchies
built on regularly sampled data sets. We refer the reader
to [LRC∗02] for a survey of approaches to multiresolution
terrain modeling, and to [PG07] for a comprehensive survey
of approaches based on regular nested triangle hierarchies.

The early work on multiresolution terrain models based
on nested triangle hierarchies [LKR∗96, DWS∗97, Paj98]
utilized a CPU-based algorithm for serialized fine-grained
updates to the terrain. Meshes can be extracted in a bottom-
up manner [LKR∗96], by simplifying the mesh at full res-
olution; in a top-down manner, by refining a coarse base
mesh [Paj98]; or incrementally, through refinements and
simplifications on a previously extracted mesh [DWS∗97].

Based on the observation that modern GPUs enable ren-
dering of pixel-sized triangles, later works [Pom00, Lev02,
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CGG∗03, HDJ05, BGP09] focus on batched updates to a
coarse-grained multiresolution model. In this case, the mul-
tiresolution hierarchy consists of a collection of macro el-
ements, each of which corresponds to a set of triangles at
a finer resolution. This set can consist of a triangulation
of a regularly [Pom00, BGP09], semi-regularly [Lev02] or
irregularly [CGG∗03] sampled dataset. These batched tri-
angulations are typically computed during an offline pre-
processing step, where highly optimized triangle strips can
be generated for efficient transfer to the GPU. Recent ap-
proaches have focused on working directly with compressed
data [GMC∗06, DSW09, LC10] and on spreading the pro-
cessing to multiple processors and displays [GMBP10].

Most parallel approaches utilize a saturated selection cri-
terion [OR98, Paj98], i.e. one in which the error at a node is
guaranteed to be greater than those of its descendants. This
requires the selection criterion to be calculated offline and
can limit the types of possible metrics. Saturated distance-
dependent metrics have also been studied, where a bound-
ing hierarchy is associated to each element [BAV98, Blo00,
LP02, Ger03]. Only the nodes within the bounded region
must be refined, while those outside this region can be safely
culled.

Ji et al. [JWLL05] present a GPU-resident LOD ap-
proach for rendering crack-free adaptive geometry im-
ages [GGH02] in the form of stitched triangulated restricted
quadtrees [VHB87,SS92]. However, they achieve crack-free
meshes through the use of a saturated error metric on the
quadtree refinement.

We propose a fine-grained GPU-based approach imple-
mented in OpenCL that evaluates each node at runtime and
applies a parallel closure operation on the mesh elements to
ensure the extraction of crack-free meshes. Thus, arbitrary
predicates can be used for the selection criterion.

3. A hierarchy of diamonds

A mesh in which all elements are defined by the uniform
subdivision of its elements into scaled copies is called a
nested mesh. A special class of nested triangle meshes are
those generated by the Longest Edge Bisection (LEB) oper-
ator, in which a triangle is bisected along the midpoint of
its longest edge and the vertex opposite this edge [Riv84].
When this rule is applied recursively to the pair of triangles
decomposing a square domain, this generates a containment
hierarchy composed entirely of isosceles right triangles.

In many applications, such as terrain processing, we
are interested in conforming, i.e. crack-free, meshes, since
cracks in the mesh correspond to discontinuities in func-
tions defined on the mesh vertices. However, bisections only
generate conforming meshes when both triangles sharing a
common longest edge bisect concurrently. This pair of trian-
gles is referred to as a diamond [DWS∗97], and the shared
longest edge is referred to as its spine (see Figure 2).

(a) 0-diamond configurations (b) 1-diamond configurations

Figure 2: Four possible diamond configurations. The spine
(green edge) of a 0-diamond (a) is a diagonal of a square
while that of a 1-diamond (b) is an axis-aligned edge. The
central vertex (hollow red circle) of a diamond is located at
the midpoint of its spine, while those of its two parents are
the two vertices not incident to the spine (blue).

A diamond is subdivided by bisecting both of its triangles.
This adds a single vertex at the midpoint of its spine, which
we refer to as its central vertex. Diamond subdivision de-
fines a direct dependency relation on the diamonds, where a
diamond δp is a parent of another diamond δc if δc contains
a triangle generated during the bisection of a triangle in δp.

This dependency relation defines a multiresolution model,
referred to as a hierarchy of diamonds, and can be mod-
eled as a Directed Acyclic Graph (DAG) whose root is the
diamond subdividing the square domain; whose nodes are
the diamonds; and whose arcs encode the parent-child rela-
tionships. Each diamond δ has two parent diamonds, whose
central vertices coincide with the two vertices of δ that are
not incident to its spine, and it has four children diamonds,
whose spines coincide with δ’s boundary edges.

A diamond δ’s depth is the length of a path from the root
of the DAG to δ. Diamonds at an even depth have spines
that are aligned with the diagonal of an axis-aligned square,
and are referred to as 0-diamonds, while those at an odd
depth have spines that are aligned with an edge of such a
square and are referred to as 1-diamonds. The set of di-
amonds at successive depths within the hierarchy define a
level of resolution. Each level of resolution can be tiled by
super-squares [WD08, WD09], structured patterns of edges
within the hierarchy (see Figure 3). The correspondence be-
tween diamonds and edges, via their spines, and between
edges and vertices of the hierarchy, via their unique mid-
points, enables efficient processing algorithms and encod-
ing schemes for hierarchical subsets of diamonds, edges and
vertices within the hierarchy. Due to the regularity of the
subdivision scheme, all geometric and hierarchical relation-
ships can be implicitly determined from the coordinates of
a diamond’s central vertex in terms of scaled offsets along
directions separated by 45◦ angles [Paj98, HDJ05, WD08].
We refer the reader to [WD10] for more details on these hi-
erarchical structures and their applications.

Diamond hierarchies can be used to extract conforming
triangle meshes of uniform or variable resolution. Each such
mesh uniquely corresponds to a closed cut of the DAG de-
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(a) (b) (c)

Figure 3: Super-squares are structured sets of edges tiling
each level of resolution within a hierarchy of diamonds.
Each super-square contains twelve edges (a), corresponding
to four 0-diamonds (b) and eight 1-diamonds (c).

Figure 4: A conforming mesh (right) extracted from a hierar-
chy of diamonds corresponds to a closed cut of the DAG de-
scribing its dependency relation (left). Triangles in the mesh
correspond to subdivided parents (filled circles) of unsubdi-
vided diamonds (unfilled circles).

scribing the diamond dependency relation, separating sub-
divided and unsubdivided diamonds, i.e. if a diamond δ is
subdivided, then both of its parents are as well. A diamond
belongs to the active front of the cut if it is not subdivided,
but at least one of its parents is. Each such subdivided parent
contributes a single triangle to the mesh. Figure 4 illustrates
a closed cut of the diamond dependency relation (left) and
its corresponding extracted mesh (right).

When used as a multiresolution model for a terrain
dataset, a diamond hierarchy can be implicitly encoded as
an array of elevation values at the coordinates of a (2N +1)2

grid, where N is the maximum level of resolution. Typically,
an approximation error is associated with each diamond in
the hierarchy to indicate its level of approximation to the un-
derlying elevation grid. Due to the correspondence between
diamonds and grid points, via their central vertices, this er-
ror field can be encoded as an array of resolution (2N +1)2.

Figure 5: System overview

4. Overview

In this section, we provide an overview of our terrain pro-
cessing framework (see Figure 5). All phases are run in par-
allel on the GPU. The CPU only needs to create the GPU
buffers, to maintain the tasks run on the GPU, and to ini-
tialize the static data such as the height values and normal
maps, if required. In a preprocessing phase, we generate the
multiresolution model in parallel. Due to the implicit nature
of the hierarchical and geometric relationships within the hi-
erarchy of diamonds model, we only need to compute the
approximation error associated with each diamond.

Hierarchy generation: This phase calculates per-diamond
approximation errors for a given height field. The error
values are stored in an error field buffer.

Mesh extraction is performed in three phases, each of
which runs entirely on the GPU in a data-parallel fashion,
and uses the output from previous phases. Although we
demonstrate the workflow for an interactive terrain render-
ing application, these three stages are common to all mul-
tiresolution terrain processing workflows, such as visibility
computation or morphological analysis.

Evaluation of the selection criterion: This phase tests the
selection criterion against each diamond in the hierarchy.
The result of each test indicates whether the diamond
should be subdivided (i.e. if it fails the test). The output
of this phase is written to a binary-valued buffer that we
call the split-bit buffer.

Transitive closure: Since conforming meshes correspond
to closed subsets of the diamond hierarchy with respect
to the dependency relation, we apply a closure operation
to the split-bit buffer. For each diamond δ with a split-bit
equal to TRUE, we mark the split-bit of all of its ancestors
as TRUE.

Generating triangle indices: This phase reads the split-bit
buffer and generates triangles for the diamonds belonging
to the active front. Specifically, when a diamond’s split-
bit is FALSE, a triangle is emitted for each of its parents
whose split-bit is TRUE.
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The selective refinement query is defined by a selection
criterion that guides the mesh extraction. The latter typically
incorporates the approximation error and can include other
terms, such as a distance-based component. In addition to
queries based on approximation error, we have implemented
selection criteria for extracting meshes at uniform resolution
as well as view-dependent queries, where the selection cri-
terion depends on the distance from the viewpoint.

The triangulation module runs entirely on the GPU and
processes a 2D domain mesh buffer, which provides the
x- and z-coordinate for each vertex to the OpenGL shader,
while the elevation value indexed at this location provides
the y-coordinate. We use an index buffer to store the three
indices for each generated triangle.

As illustrated in Figure 5, we use five GPU buffers in our
system, all of which are stored in linear (1D) arrays. In the
discussions below, the number of samples is identical to the
number of diamonds.

Height field buffer: stores the elevation values, typically re-
quiring 16-bits per sample.

Error field buffer: stores the approximation error of each
diamond, requiring 16 bits per sample.

Split-bit buffer: stores a single bit per diamond. Each dia-
mond uniquely corresponds to a single sample.

Index buffer: stores triangle mesh index data. We process
diamonds using the super-square construct. There are 48
indices reserved for each super-square (as shown in Sec-
tion 8), resulting in 4 indices per sample. Since the index
data is encoded using 32-bit integers, this buffer requires
128 bits per sample.

2D domain mesh buffer: stores the 2D coordinates of the
basic domain layout, and is used only for the rendering
phase. Each point uses two 16-bit integers, resulting in an
overhead of 32-bits per sample.

Our parallel kernels require no communication between
threads other than atomic write operations, required in some
phases for updating shared memory positions. The meth-
ods can be therefore considered as embarrassingly parallel,
and the parallelism introduced does not add computational
overhead with respect to a serial implementation of the algo-
rithms.

Our implementation uses the OpenCL API for the parallel
GPU algorithms and OpenGL for GPU rendering. However,
this system can be easily extended to other parallel/multi-
core architectures due to the low communication between
threads and limited access to shared memory. The atomic
operations are only used in the error generation phase, which
we did not optimize, and in the transitive closure operations,
where at most two threads can write to a shared memory
location in a single pass.

5. Hierarchy generation

Due to the implicit nature of the hierarchy of diamonds rep-
resentation, we only need to evaluate the approximation er-
rors for the diamonds to generate the full multiresolution ter-
rain representation.

The approximation error of a triangle t in the hierarchy,
also referred to as the total error of t [LRC∗02,WD10], is the
maximum distance from t’s plane in R3 of a sample whose
domain lies within that of t. The approximation error associ-
ated with a diamond δ is the maximum of the approximation
errors of its two triangles. Since each diamond is in one to
one correspondence with its central vertex, per-diamond er-
rors can be stored in an additional error field buffer with the
same resolution as the height field. This phase requires read
access to the height field buffer and read-write access to the
error field buffer.

Our parallel algorithm computes the errors of all the dia-
monds at a given depth in a single pass. The entire process
is applied to each depth of the hierarchy, thus, if the maxi-
mum level of resolution is N, this step requires 2 ·N passes.
Figure 6 displays elevation and error values on a synthetic
terrain dataset for selected depths (namely, d = 5 and d = 8).

In each pass, we process all samples in the domain. For
each vertex v in a given pass at depth d, we first find its
containing diamond δ at depth d (as described below). We
then compute the interpolated height value h(v) obtained
from linear interpolation of the triangle vertices (see Fig-
ures 6b and 6f). The interpolated values are used to generate
the absolute interpolation error for each vertex in the domain
(see Figures 6c and 6g). Finally, atomic MAX operations on
the diamond’s central vertex reduce these interpolation er-
rors to the correct value. Thus, after completing a pass at
depth d, the error values for all diamonds at depth d are
computed and stored in their corresponding central vertex
positions (see Figures 6d and 6h). As illustrated in Figure 6,
the interpolation errors tend to decrease at greater depths in
the hierarchy. Figure 6e shows the final error buffer values
over the entire domain.

This approach requires efficient evaluation of the unique
diamond containing a given vertex at a specified depth in
the hierarchy. When processing 0-diamonds, the central ver-
tex position can be determined by adding a diagonal offset
(equal to half the diamond’s edge length) to the lower-left
corner of the diamond, which can be found by conceptually
diving the domain into axis-aligned blocks of size diamond-
edge-length, i.e. by using the MOD operator. Similarly, when
processing 1-diamonds, the same logic can be applied af-
ter rotating the domain of 45 degrees, to align the diamonds
with the coordinate axes (similar to the quincunx quadtrees
of [Heb98, LP02]).
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(a) Height field (b) Depth 5 - Interpolation (c) Depth 5 - Difference (d) Depth 5 - Diamond errors

(e) All - Diamond errors (f) Depth 8 - Interpolation (g) Depth 8 - Difference (h) Depth 8 - Diamond errors

Figure 6: The error metric (e) computation for depths d = 5 (b-d) and d = 8 (f-h) for the procedurally generated terrain dataset
in (a).

(a) Depth=6 (b) Depth=5 (c) Depth=4 (d) Depth=3

Figure 7: Example diamonds that failing the selection criterion at descending depths within a diamond hierarchy.

6. Evaluation of selection criterion

Once the error field is computed, we initialize the diamond
refinement by testing each diamond against the selection cri-
terion and storing the result in the split-bit buffer. This phase
is run in parallel over each super-square in the hierarchy and
requires a single pass over the collection of diamonds in the
hierarchy.

Our selection criterion can be an arbitrary predicate, and
typically involves terms related to a diamond’s approxima-
tion error as well as its distance to an object of interest. The
former is evaluated at the granularity of super-squares and
is independent of the viewpoint. For each super-square, its
twelve diamond’s error values are read from the error field

and are compared against a given threshold error value. For
the latter, we consider the scaled absolute distance of a dia-
mond’s central vertex from the viewpoint. In this context,
failing the selection criterion means that the diamond re-
quires subdivision, i.e. its split-bit should be set to TRUE.
After the evaluation of all diamonds in the super-square, a
single bit value for each of the twelve diamonds is written
back to the split-bit buffer as a two byte block of memory.
Figure 7 illustrates this algorithm over the diamonds from
depths d = 6 to d = 3 on a small example dataset.

We also incorporate a geometry culling operation that re-
moves diamonds behind the frustum’s near plane, or outside
a given view angle. Thus, significantly reducing the process-
ing of invisible mesh elements in the remaining phases.
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7. Transitive closure refinements

Recall from Section 3 that a conforming triangle mesh cor-
responds to a closed cut of the diamond dependency graph.
However, after applying an arbitrary selection criterion to
the diamonds in the hierarchy, the split-bit buffer will not
generally correspond to a closed set of refinements.

Thus, we must ensure that the transitive closure of the set
bits in the split-bit buffer is satisfied. That is, for each dia-
mond δ whose split-bit is set, we propagate the split-bits up
the hierarchy by setting the split-bits of all ancestor of δ.

As in the previous phase, we achieve parallelism through
the granularity of the super-square construct. However, in
this phase, we require a bottom-up traversal within each
level of resolution of the hierarchy. In each pass, we read
the split-bit fields of each super-square and update the parent
bits accordingly. Each of the twelve diamond types within a
super-square have different parent configurations of contain-
ing super-squares. The parent diamond of a diamond can re-
side in the same super-square; in neighboring super-squares
at the same level or resolution; or, in a super-square at a
lower resolution. However, since all super-squares are iden-
tical, there are only twelve such cases to consider.

We minimize the number of read-write accesses to neigh-
boring split-bit buffers by initially caching these updates in
local memory. After all such updates have completed, we
update the neighboring super-square split-bits using atomic
OR operations. With this approach, each bit needs to be eval-
uated at most twice since a super-square can update another
neighboring super-square on the same level and the second
pass in the same level ensures that these changes propagate
to the next higher level of super-squares.

Figure 8 shows an example of the parallel transitive clo-
sure algorithm on an initial set of split-diamonds are some
diamonds in depths d = 7 and d = 6 of the hierarchy. A com-
posite diagram of the final set of diamonds that are split are
shown in Figure 8g, and its conforming mesh generated by
this set of subdivided diamonds is shown in Figure 8h. As
noted in [WD08], the number of new diamonds that are split
after this phase is bounded by a relatively small size.

8. Generation of the triangle mesh

The triangle mesh is generated in parallel by processing each
split-bit in a single pass. Using super-squares as the unit of
data parallelism, the maximum number of triangles that can
be generated is reduced from 24 (i.e. two triangles for each
of the twelve diamonds) to 16 since there is a maximum of
eight split-bits that can be set after the closure operation.

In our current system, each triangle is indexed using three
vertex indices, so the index buffer size contains 48 (i.e.
3 × 16) indices per super-square. Since the GPU discards
degenerate triangles without further rendering, triangles that

remain at zero index do not add much of a processing penalty
other than the increased size of the buffer that is processed.

A triangle of a diamond δ belongs to the mesh when the
δ’s split-bit value is FALSE and the parent’s split-bit is TRUE.
Access to the split-bits of parent super-squares is handled
similarly to the transitive closure operation (as described in
Section 7), although there are two main differences. First,
the parent values are not updated, so the split-bit access is
read-only. Second, we need some additional bookkeeping to
track the processed triangles. For example, we need the co-
ordinates of the vertices of the currently processed triangle.

Interestingly, given the above method for generating the
triangle indices from the split-bit buffer, we can analyze the
refinement operation visually. When a diamond is not re-
fined, some of the diamonds with FALSE split-bits which
should have been set to TRUE to satisfy the transitive clo-
sure create additional triangles, which intersect existing tri-
angles. By using the blending mode of the rendering pipeline
we can detect these overlaps (as in Figure 9a, where over-
laps appear as black regions) The rendering with refinement
applied (Figure 9b) illustrates that the transitive closure pro-
cess corresponds to a conforming triangulation covering the
entire domain.

(a) Mesh from initial graph (b) Mesh from closed graph

Figure 9: Visualizing the triangulation associated with a
split-bit buffer before (a) and after (b) performing the tran-
sitive closure operation. Black triangles in (a) correspond to
regions with overlapping triangles, which are not present in
the conforming mesh. The conforming mesh also has more
subdivided diamonds (red dots).

9. Performance results

In this section we present timing results of our proposed
methods works on commodity GPUs for each phase of the
framework from our sample implementation. Our imple-
mentation uses OpenCL 1.0 for the parallel GPU algorithms
and OpenGL 3.3 for rendering. The same data buffers are
shared across different GPU APIs and access across the
OpenCL and OpenGL APIs is synchronized using explicit
wait commands. High resolution timings are measured us-
ing the OpenCL event object profiling capabilities. All ex-
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(a) Depth 7 (b) Depth 6 (c) Depth 5 (d) Depth 4

(e) Depth 3 (f) Depth 2 (g) Split-Diamonds Overlayed (h) Conforming Mesh

Figure 8: Starting with a few deep diamonds (d = 7 (a) and d = 6 (b)), the refinement sets the split-bits of their ancestor
diamonds at shallower levels (c-f). (h) The conforming mesh associated with these split diamonds.

periments are run on a test machine with a NVIDIA GeForce
GTX 260 GPU (216 shader cores, 877 MB GDDR3), run-
ning Windows 7 OS (64-bit).

We present timing results in Table 1 for the various phases
of our algorithm on a 513×513 procedurally generated ter-
rain using libnoise library [Bev] and for the Puget Sound
dataset [UT] in resolutions 1k × 1k, 2k × 2k and 4k × 4k.
The results are measured in milliseconds (ms), except for
rendering, which is measured in overall frames-per-second
(fps). Initialization, refinement and mesh index generation
are considered as dynamic phases, since they need to be run
each time we generate a new terrain mesh. The performance
and timings are observed to be stable when the viewpoint
flies over the terrain, avoiding the terrain boundaries, thus
we only present representative timings for the general per-
formance.

9.1. Hierarchy generation

Although the generation of the approximation errors is likely
to be only performed a single time for a given static ter-
rain dataset, we found that this calculation can be signif-
icantly accelerated using our parallel diamond-based algo-
rithm, which scaled over multiple processing cores effi-
ciently, as shown in Table 1 under the Generate Errors head-
ing. We report the total time to generate the entire array of
errors over all depths as well as the timings for updating the

Phase 513 1025 2049 4097

Gen. Hier. Total time 260 1,118 4,615 20,401
Root-Depth 62.16 249.1 999.7 3,997
Max-Depth 0.46 1.81 7.12 33.41

Evaluate View-Dep. 0.07 0.19 0.63 12.39
Closure Max. Time 2.27 6.02 20.41 76.1

View-Dep. 0.90 1.17 1.82 3.41
Gen. Index View-Dep. 0.17 0.52 2.16 51.72
Total time (View-Dep.) 1.14 1.89 4.60 67.52

Render (fps) Dynamic 150 95 41 5
Static 780 220 62 10

Table 1: Results in ms, except rendering row in FPS

root diamond and those at the maximum depth, which de-
pends on the resolution of the dataset and ranged from 17
to 23, respectively. It can be observed that every doubling of
the domain resolution increases the total processing time by
approximately a factor of four, demonstrating linear growth.
Updating the root diamond requires the most time, since all
the writes are practically serialized to the same shared mem-
ory location using atomic updates. At higher depths, this bot-
tleneck is reduced since fewer work items write to the same
memory and we achieve significantly better parallelism.
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9.2. Evaluation of selection criterion

For these experiments, we used a view-dependent error cri-
terion, as described in Section 6. Since this phase is applied
in a single pass to all diamonds in the hierarchy, it initial-
izes the split-bit buffer in time that is linearly in the size of
the terrain dataset, as also shown by the results in Table 1.
Although the selected error criterion, including the frustum
culling, requires many arithmetic operations for each dia-
mond, this phase is the fastest of the three dynamic phases.

9.3. Transitive closure

We present two timings for the refinement phase in Table 1:
the maximum observed time, using a hierarchy initialized to
a fully-split state, and the timing of refinement on a partially-
split hierarchy, initialized with view-dependent criterion.

We note that the performance of this phase is affected by
the complexity of the split-bits set in the previous phase.
As an optimization, we can skip super-squares whose split-
bits disabled, since they cannot affect their parents. Thus, as
the number of unsubdivided diamonds increases, this phase
achieves better performance.

When using a view-dependent selection criterion, we ex-
pect that many diamonds in regions outside the viewpoint
will nor require refinement, and thus the view-dependent
metric better characterizes the expected performance for in-
teractive terrain rendering. In general, the closure step is
currently the slowest phase in our system.

9.4. Generation of triangle indices

Terrain mesh index generation requires a single pass over
the whole split-bit buffer, and the timing presents the to-
tal time of this single pass. The implementation includes an
optimization which detects super-squares in which all split-
bits are set and discards them (unless they are at the lowest
depth), since they cannot add triangles to the mesh. The re-
sult in Table 1 indicates that the mesh generation time also
scales linearly with dataset size. After every doubling of do-
main edge size, this phase runs four times slower.

9.5. Overall performance in dynamic index updating

The overall performance is displayed in two ways in Table 1.
The first focuses on the dynamic phases of our framework,
while the second focuses on the use of our system in inter-
active terrain visualization. The Total time (View-dep.) row
presents timing results of the three parallel phases for view-
dependent mesh generation (i.e. all phases except rendering
and hierarchy generation). The performance is expected to
scale linearly by the number of samples in the dataset, and
the results show some deviations from the expected theoretic
performance. We note that in our proposed system, genera-
tion of a view-dependent mesh takes less than 5 milliseconds

for terrains of size 2k×2k, which contain four million sam-
ples in total.

In our rendering tests, we both render the whole terrain at
the highest resolution as a single mesh (static), and render a
new generated terrain mesh from the current view-point of
the camera (dynamic). The results show the average frame
rates observed. The performance of the dynamic phases is
close to rendering performance, while still allowing interac-
tive visualization of terrains and generating a new mesh for
every frame. We note that a new mesh does not have to be
generated each-frame, since the computations can be spread
out over multiple frames by distributing the phases and data
ranges. This will in turn generate a mesh with fewer triangles
which has a lower vertex processing cost than a full resolu-
tion triangulation of terrain.

10. Concluding remarks

We have introduced parallel algorithms for generating,
querying and rendering a multiresolution terrain model us-
ing an entirely GPU resident hierarchy of diamonds that ex-
ploits the data parallelism enabled through the super-squares
primitive. We have demonstrated interactive querying and
rendering of large datasets on commodity GPUs that require
the CPU only for calling the GPU kernels.

A major advantage of our approach which we are planning
to explore in our future work is its ability to apply arbitrary
predicates to control the extraction of conforming meshes
from the hierarchy. Thus this approach can be beneficial in
common GIS applications including visibility computations,
viewshed and horizon computations of data points at any in-
termediate (uniform or variable) resolution, or morphologi-
cal analysis, such as computing the regions of influence of
the critical point at different resolutions.

A limitation of the current approach is that it must process
the entire multiresolution terrain dataset, since it considers
terrains sampled at all the vertices of a regular grid. There
are however applications in which elevation values are avail-
able only at a subset of the vertices of the grid, or that only
a subset of vertices have a meaningful elevation (like in ter-
rain data sets containing flat regions or planetary data sets
with large areas corresponding to the ocean). For these ap-
plications, we are currently investigating the use of adaptive
representations of the terrain dataset such as those presented
in [WD08]. This can also be helpful in dynamically updating
the dataset when new data becomes available.

Alternatively, our approach could be coupled with a batch
updated triangulation structure to reduce the processing of
lower levels of the hierarchy. Thus, each macro triangle gen-
erated during our refinement process can be replaced by a
batch of triangles. This approach can help bridge the gap
between the performance of our system and the state of
the art batched update approaches [Pom00, HDJ05, BGP09,
LKES09].
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As future work, we are investigating the use of geom-
etry shaders to emit triangles on a per-super-square basis.
This can eliminate the index and domain mesh buffers from
our pipeline, thereby reducing the memory requirements and
mesh extraction times.
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