
ABSTRACT

Title of dissertation: DIAMOND-BASED MODELS
FOR SCIENTIFIC VISUALIZATION

Kenneth Weiss, Doctor of Philosophy, 2011

Dissertation directed by: Professor Leila De Floriani
Department of Computer Science

Hierarchical spatial decompositions are a basic modeling tool in a variety of applica-
tion domains including scientific visualization, finite element analysis and shape modeling
and analysis. A popular class of such approaches is based on the regular simplex bisection
operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the mid-
point of a predetermined edge. Regular simplex bisection produces adaptive simplicial
meshes of high geometric quality, while simplifying the extraction of crack-free, or con-
forming, approximations to the original dataset. Efficient multiresolution representations
for such models have been achieved in 2D and 3D by clustering sets of simplices sharing
the same bisection edge into structures called diamonds.

In this thesis, we introduce several diamond-based approaches for scientific visual-
ization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two
related simplicial decompositions of hypercubes. This enables us to enumerate the ver-
tices, simplices, parents and children of a diamond. In particular, we identify the number
of simplices involved in conforming updates to be factorial in the dimension and group
these into a linear number of subclusters of simplices that are generated simultaneously.
The latter form the basis for a compact pointerless representation for conforming meshes
generated by regular simplex bisection and for efficiently navigating the topological con-
nectivity of these meshes.

Secondly, we introduce the supercube as a high-level primitive on such nested
meshes based on the atomic units within the underlying triangulation grid. We propose
the use of supercubes to associate information with coherent subsets of the full hierarchy
and demonstrate the effectiveness of such a representation for modeling multiresolution
terrain and volumetric datasets.

Next, we introduce Isodiamond Hierarchies, a general framework for spatial access
structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric
relationships of the diamond model. We use an isodiamond hierarchy to encode irregular
updates to a multiresolution isosurface or interval volume in terms of regular updates to
diamonds.

Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their
higher dimensional analogues, through the lens of diamond hierarchies. This allows us
to determine the relationships involved in generating balanced hypercubic meshes and
to propose a compact pointerless representation of such meshes. We also provide a local
diamond-based triangulation algorithm to generate high-quality conforming simplicial
meshes.

DIAMOND-BASED MODELS FOR SCIENTIFIC VISUALIZATION

by

Kenneth Weiss

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:

Professor Leila De Floriani, Chair/Advisor
Professor Larry S. Davis
Professor Samuel N. Goward
Professor David Mount
Professor Hanan Samet
Professor Amitabh Varshney

c© Copyright by
Kenneth Weiss

2011

Acknowledgments

I owe my deepest gratitude to all the people who have made this dissertation possible.
First and foremost, I would like to thank my advisor, Professor Leila De Floriani, for

your advice, encouragement, direction and support over the past five years. It has been a
pleasure to work with you and to learn from you. I am especially grateful for the time and
freedom to develop the ideas in this thesis. Although the scope of the project has changed
considerably since our initial discussions, you were always happy to provide helpful
thoughts, key suggestion in framing the problems and essential critiques to strengthen the
results as this project has evolved.

I would also like to thank the the members of my thesis committee Professors
Amitabh Varshney, Hanan Samet, David Mount, Larry Davis and Samuel Goward, for
your time and insightful comments and suggestions. To Amitabh, thank you for your
guidance during my early graduate career. Your advice on aiming for excellence and on
the half-life of research ideas were invaluable in shaping my understanding of the research
environment and in finding my role in it. Your suggestion about relating diamonds to
quadtrees and octrees was the driving force behind Chapter 10. To Hanan, your framework
for spatial decompositions and encyclopedic knowledge of the field were instrumental in
my understanding and appreciation of hierarchical models. Thank you for all of your
extremely helpful advice on matters related (and unrelated) to research. To Dave, it was
a pleasure working with you as your teaching assistant for computer graphics. Your
dedication to your work and students is an inspiration.

I would also like to thank my teachers and classmates in the University of Maryland
and in Binghamton University. In particular, thank you Professor Lijun Yin for involving
me in your research as an undergraduate and for instilling in me a passion for research in
computer graphics and visualization. Your training and guidance helped me get through
my first few years of graduate school.

I owe my deepest thanks to my family for their love and support, for encouraging
me to pursue my academic interests and for placing such a high value on my education.
To my father, Peter, for explaining the difference between bits and bytes on those long
drives many years ago and for teaching me to always think strategically in chess and in
life. To my mother, Bella, for always asking about the details of my work, even when the
topics are abstract and the hour is late. To Linda, for always encouraging me to pursue my
artistic interests. To Jamie and Ari, for always being there when I need you. To Lillian,
David and Ariella, for understanding what it is like to be in graduate school.

Finally, to my wife Aliza, thank you for your endless love and encouragement. I
could not have made it through this program without you and I dedicate this thesis to you.

ii

Table of Contents

List of Tables vii

List of Figures viii

List of Algorithms xi

1 Introduction 1
1.1 Contribution . 3
1.2 Thesis organization . 6

2 Background notions 9
2.1 Cellular meshes . 9

2.1.1 Hypercubic meshes . 10
2.1.2 Simplicial meshes . 11

2.2 Nested mesh refinement . 11
2.2.1 Regular refinement . 12
2.2.2 Bisection refinement . 13

2.3 Modeling scalar fields . 13
2.3.1 Isosurfaces and interval volumes 14

2.4 Multiresolution models . 15
2.4.1 Selective refinement . 16

3 State of the art 17
3.1 Domain decompositions . 17

3.1.1 Uniform grid . 18
3.1.2 Quadtrees, octrees and 2d-trees 18

3.1.2.1 Balanced 2d-trees . 19
3.1.2.2 MX-2d-trees . 20
3.1.2.3 PR-2d-trees . 21
3.1.2.4 Pyramids . 21

3.1.3 K-d trees . 21
3.1.4 Nested simplicial meshes . 21

3.1.4.1 Regular refinement 22
3.1.4.2 Simplex bisection . 22

3.2 Marching cells . 25
3.2.1 Isosurfaces . 25
3.2.2 Interval volumes . 26

3.3 Hierarchical data structures for scientific visualization 27

iii

3.3.1 Hierarchy as spatial access structure 27
3.3.2 Multiresolution field representations 28

3.3.2.1 Two dimensional domains 28
3.3.2.2 Three dimensional domains 32
3.3.2.3 Higher dimensional domains 34

3.3.3 Adaptive representations for extracted meshes 35
3.3.4 Multiresolution representations for extracted meshes 37

3.4 Discussion . 38

4 Diamond hierarchies of arbitrary dimension 41
4.1 Cross simplex and cross complex . 41
4.2 Simplicial decomposition of hypercubes 42

4.2.1 Kuhn subdivisions . 42
4.2.2 Maubach’s typographical bisection scheme 44
4.2.3 Fully subdivided hypercubes . 46

4.3 A hierarchy of RSB simplices . 48
4.4 A hierarchy of diamonds . 50

4.4.1 Diamond subdivision . 50
4.4.2 Diamond dependency relation 51
4.4.3 Parent-child duets . 52

4.5 Properties of a hierarchy of diamonds 53
4.6 Querying an RSB hierarchy . 57
4.7 Discussion . 61

5 Supercubes: A high-level primitive for RSB hierarchies 65
5.1 Tiling space with Kuhn cubes . 65
5.2 Supercubes . 67
5.3 Discussion . 74

6 Encoding diamond hierarchies 77
6.1 Encoding diamonds . 77

6.1.1 Diamond scale . 78
6.1.2 Diamond type . 78
6.1.3 Supercube origin . 79
6.1.4 Diamond components . 79

6.1.4.1 Kuhn-subdivided component 80
6.1.4.2 Fully-subdivided component 80

6.1.5 Example . 81
6.1.6 Domain corners . 82

6.2 Encoding supercubes . 82
6.2.1 Encoding collections of supercubes 83

6.3 Encoding RSB meshes . 83
6.3.1 Simplex-based representation 84
6.3.2 Diamond-based representation 85
6.3.3 Supercube-based representation 85

iv

7 Diamond-based multiresolution scalar fields 87
7.1 DMSF Model . 87

7.1.1 Generating a DMSF . 87
7.2 Full DMSF . 88
7.3 Partial DMSF . 88
7.4 Theoretical evaluation . 90
7.5 Applications . 92

7.5.1 Error-based generation . 92
7.5.1.1 Terrain modeling . 93
7.5.1.2 Modeling volume data 94

7.5.2 Range-based generation . 94
7.5.3 Region Of Interest-based generation 97
7.5.4 Merging corresponding partial DMSFs 97

7.6 Runtime performance . 100
7.7 Discussion . 102

8 Topological navigation on diamond meshes 105
8.1 Topological relations . 106
8.2 Properties of diamond meshes . 107
8.3 Retrieving topological relations on diamond meshes 108
8.4 Retrieving topological relations on 2D diamond meshes 110

8.4.1 Boundary relations involving 2D diamonds 110
8.4.2 Adjacency relations involving 2D diamonds 111
8.4.3 Co-boundary relations involving 2D diamonds 112
8.4.4 Deriving the remaining topological relations 114

8.5 Retrieving topological relations on 3D diamond meshes 114
8.5.1 Boundary relations involving 3D diamonds 115
8.5.2 Adjacency relations involving 3D diamonds 116
8.5.3 Co-boundary relations involving 3D diamonds 117

8.6 Results . 118
8.7 Discussion . 122

9 Isodiamond hierarchies 123
9.1 Isodiamonds . 123
9.2 Encoding isodiamonds . 125
9.3 Relevant isodiamonds . 127

9.3.1 Definition . 128
9.3.2 Data structure . 128
9.3.3 Generating an RI hierarchy . 129
9.3.4 Querying an RI hierarchy . 129

9.4 Minimal isodiamonds . 130
9.4.1 Definition . 130
9.4.2 Properties . 131
9.4.3 Data structure . 132
9.4.4 Generating an MI hierarchy . 133

v

9.4.5 Querying an MI hierarchy . 133
9.5 Results . 136

9.5.1 Front-size and extraction times 138
9.6 Discussion . 140

10 Hierarchies of balanced hypercubes 143
10.1 Hypercube hierarchies . 144

10.1.1 Balanced refinement . 144
10.1.2 Balanced hypercube hierarchies 145

10.2 Encoding hypercube hierarchies and their extracted meshes 147
10.2.1 Encoding hypercubes . 147
10.2.2 Encoding dependency relations 149
10.2.3 Encoding k-balanced hypercubic meshes 149

10.3 Triangulating nested hypercubic meshes 151
10.3.1 Mesh balancing . 153
10.3.2 Vertex caching . 153
10.3.3 Hypercube triangulation . 153
10.3.4 Results . 156

11 Conclusions 161
11.1 Three families of nested RSB meshes 162
11.2 Future work . 164

A Double factorial 167

B Common terms involving binomials, exponents and factorials 168

C Binomial theorem 169
C.1 Simplified binomial theorem . 169
C.2 Related proof . 170

Bibliography 173

vi

List of Tables

3.1 Taxonomy of simplex-based approaches 39
3.2 Taxonomy of diamond-based approaches 39

4.1 Number of simplices in an i-diamond 57
4.2 Number of vertices in an i-diamond . 57
4.3 Number of children of an i-diamond . 59
4.4 Number of parents of an i-diamond . 59
4.5 Number of top simplices in a parent-child duet 59

5.1 Number of i-diamonds in a d-dimensional supercube 73

7.1 Storage requirements and overhead for DMSF representations 91
7.2 Density and concentration for DMSF models in 2D 91
7.3 Results for error-based partial DMSFs extracted from terrain datasets . . . 93
7.4 Results for error-based partial DMSFs in 3D 95
7.5 Results for isovalue-based partial DMSFs in 3D 97
7.6 Selective refinement performance for DMSF representations in 3D 101

8.1 Storage costs for 2D and 3D topological data structures 120
8.2 Extracted RSB meshes at different resolutions in 3D 121
8.3 Cardinality of co-boundary relations within RSB meshes in 3D 122

9.1 Status of arcs in dependency graph of minimal isodiamond hierarchy . . . 133
9.2 Results for isodiamond hierarchies in 3D 137

10.1 Positions of bits in hypercube encoding 150
10.2 k-balanced hypercubic meshes . 152
10.3 Results for triangulations of edge-balanced hypercubic meshes 157

B.1 Common terms involving exponents, factorials and binomials. 168

vii

List of Figures

1.1 Variable resolution meshes . 2
1.2 Associating values with cells or vertices of a mesh 3

2.1 Conforming and non-conforming meshes 10
2.2 Hypercubes: recursive definition. 10
2.3 Diagonal of a hypercube . 11
2.4 Regular refinement of a d-cube in 2D and 3D 12
2.5 Regular refinement of a simplex in 2D and 3D 12
2.6 Simplex bisection in 2D and 3D . 13
2.7 Isosurface and interval volume extracted from a nested triangle mesh . . . 14

3.1 Bisection-based and Delaunay-based triangulations of a hypercube 20
3.2 Splitting and merging of a diamond . 29
3.3 Batched triangulations at three levels of resolution 30
3.4 Octagonal descendant domain of a two-dimensional diamond 31

4.1 Cross simplex and cross complex . 42
4.2 Kuhn subdivided hypercubes in 1D, 2D and 3D 42
4.3 Decomposition of a d-cube into d! simplices in 3D 43
4.4 d simplex classes in RSB scheme in 2D and 3D 45
4.5 Three consecutive Maubach complexesMi(h) in 2D 46
4.6 Four consecutive Maubach complexesMi(h) in 3D 46
4.7 Fully subdivided i-cube boundary BF in 1D, 2D and 3D 48
4.8 A hierarchy of RSB triangles . 49
4.9 The d classes of diamonds in 2D and 3D 51
4.10 Diamond subdivision in 2D and 3D . 51
4.11 Modifications in diamond hierarchy . 52
4.12 A hierarchy of diamonds in 2D . 53
4.13 Parent-child duets in 2D and 3D . 54
4.14 Dual grid for diamond decomposition 55
4.15 Decomposition of 1-diamond in 3D . 56
4.16 Decomposition of an i-diamond in dimension d as a cross complex 58
4.17 Selective refinement and active front on diamond hierarchy 62
4.18 Nested refinement domains of three-dimensional diamonds 64

5.1 Tiling the plane with Kuhn squares . 66
5.2 J1 tiling at three levels of resolution in 3D 66
5.3 Relationship between regular refinement of hypercubes, the Freudenthal

triangulation K1 and the Tucker-Whitney triangulation J1 68

viii

5.4 Supercubes at three levels of resolution in 2D 69
5.5 Faces and edges of a half-open cube in 2D and 3D 70
5.6 Edges of a supercube in 3D . 70
5.7 Simplices in a supercube . 72
5.8 Diamonds in a 2D supercube . 73
5.9 Diamonds in a 3D supercube . 74

6.1 Diamond type as supercube offset . 80
6.2 Diamond encoding example . 82
6.3 Supercube-based active front encoding in 2D 86

7.1 Tile from GTOPO 30 dataset as full DMSF and as partial DMSF 89
7.2 Comparison between density D, concentration C and storage costs for

partial DMSF representations . 92
7.3 Results for partial DMSF encoding in 2D 94
7.4 Results for error-based partial DMSF encoding in 3D 95
7.5 Results for isovalue-based partial DMSF encoding in 3D 96
7.6 Circular region of interest (ROI) from Puget Sound 1k dataset 98
7.7 Merged DMSF models . 100
7.8 Isosurfaces extracted from DMSF models, colored by supercube 103

8.1 Vertices and diamonds in a diamond mesh 107
8.2 Diamonds in 2D and 3D . 107
8.3 Lifespan of an edge in a diamond mesh 109
8.4 Extraction of Vertex-Edge relation in a diamond mesh 110
8.5 Diamond-Diamond relation in 2D . 112
8.6 Possibilities for Edge-Diamond relation in 2D 113
8.7 Vertex-Diamond relation in a diamond mesh 114
8.8 Elements of a three-dimensional duet . 115
8.9 Diamond-Diamond relation in 3D . 116

9.1 Isodiamond hierarchies . 125
9.2 Isodiamond modifications . 125
9.3 Creation isodiamonds . 126
9.4 Isodiamond field for 2D bonsai tree dataset at isovalue κ = 58 126
9.5 Parents and children of a creation isodiamond 132
9.6 Diamond meshes extracted from MI and RI hierarchies of 2D bonsai tree

dataset at isovalue κ = 58 . 134
9.7 Potential problems with creation isodiamonds in MI hierarchy 135
9.8 Extraction times and active front sizes for meshes extracted from diamond

and isodiamond hierarchies . 138
9.9 Isosurfaces and interval volume meshes extracted from isodiamond hier-

archies . 141

10.1 Edge-balanced and facet balanced cubic meshes 144
10.2 Immediate predecessors of a hypercube for k-balanced refinement 146

ix

10.3 Result of k-balanced refinement of a hypercube in 2D 146
10.4 Supercube encoding of hypercubes . 148
10.5 Overview of hypercube triangulation algorithm 152
10.6 Diamond-based triangulations of a cube in 3D 153
10.7 Hypercubic and diamond-based decompositions of Bunny dataset sur-

rounding isovalue κ = 0 . 159

11.1 Minimal triangulations for the three families of RSB meshes: S,D andH 164

x

List of Algorithms

4.1 AdaptiveRefine(σ) . 60
4.2 SelectiveRefine(δ,ForceRefine) . 61
8.1 Diamond-DiamondRelation(δ) . 111
10.1 CacheVertices(C) . 154
10.2 TriangulateHypercubicMesh(C) . 154
10.3 LocalRefineDiamond(δ,Σh, h) . 155

xi

Chapter 1

Introduction

One of the fundamental problems in computer graphics, scientific visualization, geo-
graphic data processing, and shape analysis and understanding is how to deal with the
huge amount of data that describe the objects of interest. A diverse class of approaches uti-
lizes a hierarchical organization of the field domain to describe subsections of these objects.
Examples include the analysis and visualization of two-, three- and higher-dimensional
scalar fields, where the domain of the field is adaptively decomposed into nested cells of
a simple geometric shape.

The availability of very large meshes describing free-form shapes, terrains, and
volume data sets has led to the investigation of mesh-based multiresolution methods to
control and adjust the level of detail (LOD) in the representation of a given data set.
Multiresolution models provide a great deal of flexibility since they compactly encode a
large number of different mesh-based representations of a shape, or of a field, and enable
the efficient extraction of a variety of different representations at uniform or variable
resolutions.

Although an irregular sampling of the domain provides a great deal of flexibility
in the sampling locations, and can thus represent the features of a problem domain using
fewer elements than a regularly sampled domain, this representation has a geometric
overhead, due to the explicit storage of the coordinates, and a topological overhead, due
to the explicit representation of the connectivity among the vertices. Conversely, regularly
sampled domains have no geometric or topological overhead since the coordinates can
be directly inferred from the position of the data points in a grid. However, they suffer
from a high sampling overhead, that is, the overhead related to the number of samples
required to represent the features within the dataset, due to the rigid structure of such
grids. When a multiresolution representation of the dataset is considered, the hierarchical
overhead, related to how finer representations are obtained from coarser ones, must also
be considered.

Decompositions based on nested hypercubes, such as quadtrees and octrees, are
a typical compromise between the two representations since their vertices lie along a
regular grid while aggregating the less relevant regions into larger blocks. A drawback
of these techniques is that they introduce an exponential number of vertices and cells
(of the order d of the dimension of the domain) during each subdivision. Furthermore,
both quadtrees and octrees (as well as their d-dimensional generalizations, that we call
2d-trees) are less suitable for generating crack-free, or conforming, decompositions since
the bilinear or trilinear interpolant over each square or cubic cell generates discontinuities
on the boundary of adjacent cells that have different sizes. Thus, additional rules must be
applied to ensure compatibility between neighboring cells.

In contrast, models based on Maubach’s simplicial bisection scheme [Mau95],

1

(a) Irregular (b) Quadtree (c) RSB Mesh

Figure 1.1: (a) Irregular mesh (b) Triangulated balanced quadtree (c) Regular Simplex Bisection
(RSB) mesh.

which we refer to as the Regular Simplex Bisection (RSB) scheme, enable the generation
of more adaptive meshes over the same domain by breaking up each 2d-tree subdivision
into d steps [Pas02] while enforcing conforming modifications to the model. Nested RSB
meshes in fact have a higher degree of adaptability to the features of a domain than 2d-
trees, since RSB subdivisions only add a single vertex (rather than an exponential number
of vertices), and double the number of cells involved in each subdivision. Furthermore,
they have a higher representational power than 2d-trees, i.e., the set of triangulations deriv-
able from RSB subdivisions is a superset of those derivable from triangulated balanced
quadtrees and octrees. On the other hand, compared with multiresolution models based
on irregular sampling, such as the MultiTessellation (MT) [DPM97], nested RSB meshes
can be encoded implicitly and thus have smaller storage costs [DFMP00].

Efficient representations have been proposed for multi-resolution models of scalar
fields in 2D and 3D based on clustering maximal simplices (triangles or tetrahedra, in
these cases) sharing their bisection edge into a new geometric primitive called a diamond.
Diamond-based representations exploit the regularity of the vertex distribution, and of the
subdivision rule which produces diamonds of certain fixed shapes, to yield an implicit en-
coding of the hierarchical and geometric relationships among the triangles and tetrahedra,
respectively.

These subdivisions have many applications in the analysis and visualization of sci-
entific and medical data. They have been applied to interactive terrain rendering [EKT01,
LP02, DWS+97] and multiresolution isosurface extraction [ZCK97, GR99, GDL+02], as
well as volume segmentation [KTY+04], surface reconstruction [MVT03] and finite el-
ement analysis [Mau95, RL92]. Four-dimensional applications include multiresolution
representations for time-varying volumetric datasets [LDS04,LPD+04], acceleration struc-
tures for ray tracing [AM07] and the analysis of bivariate complex functions [WB96].
Higher dimensional applications include five-dimensional weather data [HAF+96], fixed
point computations [Mau95] and the solution spaces of parametrized equations.

2

(a) Values associated with cells (b) Values associated with vertices

Figure 1.2: (a) Associating scalar values with the cells of a mesh can lead to cracks. (b) A mesh
is free of cracks when values are associated with the vertices of a conforming mesh.

1.1 Contribution

In this thesis, we argue that diamonds are the natural representation for generating, mod-
eling and encoding conforming meshes extracted through the Regular Simplex Bisection
scheme and introduce several diamond-based approaches for scientific visualization.

Diamond hierarchies of arbitrary dimension. Our first contribution is a formalization
of the notion of diamonds in arbitrary dimensions and their relationship to the simplices
generated by the Regular Simplex Bisection (RSB) scheme. We frame our discussion
of diamonds in terms of two related simplicial decompositions of hypercubes. Through
a careful analysis of the properties of these structures, we prove that diamonds can be
decomposed as a cross complex (a simplicial cross product) of these two structures and
we derive the first closed-form equations for the number of vertices, simplices, parents
and children of a diamond.

Specifically, we prove that the number of d-simplices in a d-dimensional diamond
which must be bisected simultaneously for conforming refinements is factorial in the di-
mension d of the domain. However, due to the regularity of the diamond subdivision oper-
ation, these simplices can be grouped into a linear number of clusters, which we refer to as
parent-child duets, that are generated simultaneously. Consequently, while simplex-based
representations require O(d!) time to update and space to encode an extracted simplicial
complex, diamond-based representations can encode the O(d!) simplices of a diamond
using only O(d) space, and can subdivide diamonds in O(d) time. Our combinatorial
decomposition leads to an implicit pointerless representation for d-dimensional diamonds,
enabling efficient representations for hierarchies of diamonds and their extracted meshes.

Supercubes: A high-level primitive for RSB hierarchies. Next, we propose a high-
level primitive for hierarchies generated by RSB, which we call supercubes. A supercube
is a structured set of edges within an RSB hierarchy that captures the intrinsic symmetry
within the model. Whereas simplex-based and diamond-based representations contain

3

several similarity classes of primitives, each with different geometric alignments, super-
cubes are all identical (up to translation and scale). Diamonds and supercubes are related
by a one-to-one correspondence from the bisection edge of a diamond to an edge of a
supercube. Thus, each edge of a supercube corresponds to a distinct type of diamond
within the hierarchy.

Many operations on RSB hierarchies apply to only a sparse subset of the elements
within the hierarchy. For example, due to the uniformity of the regular sampling, large
regions of a scalar field’s domain are often oversampled. Additionally, in isosurfacing
applications, we are only interested in the subsets of the domain that intersect a given iso-
surface. However, implementations of these hierarchies have mostly focused on efficient
representations for the entire hierarchy, where all simplices or diamonds are implicitly
indexed. We propose the use of supercubes as containers for data associated with coherent
subsets of the elements of an RSB hierarchy. Since partial representations incur overhead
related to the explicit storage of spatial indexes, we consider the dataset’s density, the
number of encoded samples with respect to an encoding of the full hierarchy, as well as its
concentration, the average number of elements associated with each supercube, to evaluate
the effectiveness of a supercube-based representation for a given dataset. We demonstrate
that the geometric overhead incurred by a multiresolution model of a complete or partial
scalar field is largely reduced through the use of supercubes.

A particularly important application of supercube-based models is in the field of
Geographic Information Systems (GIS), where regular grids are the most common for-
mat for terrain datasets. Supercubes provide a solution for a long-standing problem of
representing subsets of a regular grid. For example, elevation data for rough terrain and
coastlines are required to be sampled at a high resolution, while flatter regions, especially
those covering large bodies of water, do not require such high sampling resolution. This
is especially relevant for global datasets since approximately 70% of the earth’s surface is
covered by water.

Similarly, for volumetric datasets, the objects of interest are often embedded within
a regularly sampled cubic domain. We demonstrate that typical volumetric datasets (from
the Volume Visualization repository [Vol]) are oversampled by a factor or three or more,
with respect to a lossless supercube-based encoding of the multiresolution scalar field.

Topological navigation on diamond meshes. In shape modeling and analysis applica-
tions, we are often interested in computing local properties about elements within a mesh.
Such queries are typically posed in terms of local neighborhoods surrounding a region
of the mesh and require efficient support for navigating its topological connectivity. Ex-
amples include visibility queries on terrain datasets, compression and repair of simplicial
meshes, curvature estimation and ray casting algorithms.

However, due to the increasing sizes of datasets, it is important to reduce the storage
requirements associated with the mesh’s topological connectivity. Not only does this
require additional storage space, but it must also be maintained when modifying the mesh,
for example, during mesh simplification or refinement.

Diamond meshes are a compact representation for conforming RSB meshes which
do not explicitly encode any information related to topological connectivity of its elements.

4

After analyzing the structure of these meshes based on the manner in which they are gener-
ated, we introduce algorithms to perform topological navigation directly on these meshes
without requiring any additional information. We demonstrate that in 3D, our representa-
tion requires an order of magnitude less space than the state of the art representation for
tetrahedral meshes [PBCF93], and that the benefits of this representation increase with the
resolution of the extracted mesh.

Isodiamond hierarchies. Another contribution of the current work is in the visualiza-
tion of volumetric datasets, which are often analyzed through their surfaces of constant
field value, known as isosurfaces, or through the subvolumes enclosed by two isosurfaces,
known as interval volumes. These structures are based on a limited range of the field
values and typically occupy a sparse, but spatially widespread, subset of the dataset. Mul-
tiresolution representations are useful to analyze and visualize isosurfaces and interval
volumes, since at full resolution both can contain from millions to billions of elements.
Furthermore, in scientific and medical applications, details at the highest available resolu-
tion are required on demand and, thus, simplified approximations of these datasets are not
sufficient.

Once a relevant isosurface or interval volume is found, it can be useful to represent
it in a more convenient format, e.g. for transmission and offline viewing of the mesh.
Indexed tetrahedral meshes are a popular output format for such meshes, where only the
vertices and tetrahedra are explicitly stored. However, while this is a useful format for
rendering applications, it is not particularly useful for more involved mesh processing tasks
that require a notion of spatial proximity between elements. Also, these indexed meshes
can also exceed a machine’s processing capabilities and often require simplification to be
suitable for downstream tasks.

To this aim, we introduce the Isodiamond Hierarchy framework for encoding mul-
tiresolution isosurfaces or interval volumes extracted from a hierarchy of diamonds. The
basic idea here is to exploit the regular nested decomposition of the domain to produce
compact hierarchical representations of a single isosurface or a single interval volume.
Since the desired isosurface or interval volume is determined in advance, these represen-
tations are able to decouple the implicit hierarchical and geometric relationships in the
hierarchy of diamonds from the field values of the volume dataset. Thus, such models
enable a compact encoding of modifications to the irregular isosurface or interval volume
in terms of regular modifications to the corresponding nodes of the hierarchy of diamonds.

We introduce two multiresolution models based on this framework. The first model,
which we call a Relevant Isodiamond (RI) hierarchy, encodes a collection of active mod-
ifications to a coarse representation, corresponding to the diamonds in the hierarchy of
diamonds intersected by the isosurface or interval volume. An RI hierarchy also encodes
all relevant modifications, which are ancestors of active modifications that are not inter-
sected by the isosurface or the interval volume. Relevant modifications enable spatial
access to the active modifications and guarantee that all the meshes extracted from the RI
hierarchy are free of cracks.

The second multiresolution model that we propose, which we call a Minimal Isodi-
amond (MI) hierarchy, encodes the active modifications as well as a small subset of the

5

relevant modifications corresponding to the creation of new isosurface or interval volume
components. As a consequence, this model requires a careful analysis to guarantee that
the extracted meshes do not self-intersect. In addition to the reduced storage requirements,
we show that the same uniform- and variable-resolution representation of the encoded iso-
surface or interval volume can be extracted from the MI hierarchy as from the RI model,
but in less time, and using less memory. Both representations support efficient general
selective refinement operations to extract conforming meshes at different resolutions from
the model using application-dependent selection criteria.

Hierarchies of balanced hypercubes. Although the focus of this thesis is on nested
simplicial decompositions, there are many applications of nested hypercubic grids includ-
ing those based on quadtrees, octrees and their higher dimensional extensions [Sam06].
Downstream applications typically require mesh elements to satisfy certain quality con-
straints related to the shapes of the elements as well as the rate of adaptivity within the
mesh.

Geometric quality constraints can be enforced by using refinement rules that only
generate mesh elements from a small set of acceptable modeling primitives [Bey00]. A
common adaptivity constraint is to ensure that neighboring elements differ in resolu-
tion by at most one refinement level, i.e. the ratio of edge lengths between neighboring
elements can be at most 2:1. This constraint has been considered in many different
application domains, including computational geometry [BEG94, BG06], scientific visu-
alization [EKT01, WKE99] and computer graphics [VHB87] under various terms such as
restricted [VHB87, SS92], smooth [Moo92] and balanced [Moo95, SSB08].

We introduce hierarchies of balanced hypercubes defining families of nested hyper-
cubic meshes with balancing restrictions. We provide a formal treatment of the dependency
relation among hypercubes in a nested hypercubic mesh, necessary to generate balanced
hypercubic meshes. This framework is general enough to encompass traditional quadtrees
and octrees, which we refer to as unbalanced.

Our analysis stems from a novel reinterpretation of nested hypercubic meshes
through the lens of diamond hierarchies, whereby hypercubes are seen as a special class
of diamonds. This yields a compact pointerless encoding for balanced hierarchies of hy-
percubes, which provides random access to the hierarchical ancestors of each hypercube
as well as for meshes extracted from such hierarchies. The connection to diamonds also
suggests a supercube-based representation for encoding the vertices and cells of a bal-
anced hypercubic mesh, and for a local diamond-based triangulation algorithm to generate
conforming RSB meshes from balanced hypercubic meshes.

1.2 Thesis organization

The remainder of this dissertation is organized as follows.
In Chapter 2, we review some background notions on cell and simplicial complexes,

on modeling scalar fields and on mesh-based multiresolution models.
In Chapter 3, we review the state of the art on domain decompositions and on

visualization of scalar fields, with an emphasis on approaches based on regular simplex

6

bisection.
In Chapter 4, we introduce our dimension-independent approach for diamonds. We

frame our discussion in terms of two related simplicial decompositions of a hypercubic
domain, and prove that a diamond can be defined as a cross complex of these two de-
compositions. This enables a comprehensive description of the properties of diamonds
in arbitrary dimensions. We conclude with a discussion of diamond-based simplicial
complexes extracted from a hierarchy of diamonds and some implications of our diamond-
based approach.

In Chapter 5, we introduce the supercube as a high-level primitive for hierarchies
of nested RSB meshes. After considering the underlying domain decomposition induced
by RSB, we investigate the properties of supercubes, and the number of vertices, edges,
simplices and diamonds uniquely indexed by each supercube.

We follow this in Chapter 6 with an encoding for diamonds, diamond hierarchies,
supercubes and RSB meshes extracted from a hierarchy of diamonds.

We next introduce the Diamond-based Multiresolution Scalar Field (DMSF) model
for a scalar field in Chapter 7. The Full DMSF model applies to datasets defined over a
hypercubic domain of resolution (2N + 1)d, while the Partial DMSF model applies to a
subset of samples from a full DMSF that is closed with respect to the diamond dependency
relation. We discuss the advantages of a partial DMSF from a theoretical perspective, and
introduce several practical applications.

In Chapter 8 we reexamine the structure of extracted diamond meshes to define
optimal algorithms for topological navigation on 2D and 3D diamond meshes. We then
compare our diamond-based and supercube-based representations for RSB meshes to a
simplex-based representation and to a compact topological data structure for general sim-
plicial meshes. Compared to the latter, our representations require an order of magnitude
less space.

In Chapter 9, we introduce the Isodiamond Hierarchy framework for spatial access
structures defined on a hierarchy of diamonds. The two multiresolution models for isosur-
faces and interval volumes are introduced in Sections 9.3 and 9.4, respectively, and are
compared in Section 9.5.

In Chapter 10, we apply our understandings of diamond hierarchies to balanced
hierarchies of nested hypercubes. We first analyze the dependency relation induced by
balanced hypercubic refinement to define a multiresolution model. Next, we adapt our
diamond encoding of Chapter 6 to yield an efficient representation for nested hypercubic
meshes. Finally, we introduce a diamond-based triangulation algorithm to convert nested
hypercubic meshes into conforming RSB meshes.

We conclude in Chapter 11 with a summary of our results. In particular, we discuss
how the supercube primitive relates the families of nested RSB meshes generated by
simplex bisections, by diamond subdivisions and by triangulations of nested hypercubic
meshes.

7

Chapter 2

Background notions

In this chapter, we introduce some background notions on cell complexes, on modeling
scalar fields and on mesh-based multiresolution models that we use in the remainder of
the thesis.

2.1 Cellular meshes

A convex polytope is a subspace of Rn bounded by a set of half-spaces. Polytopes general-
ize line segments (1-polytopes), polygons (2-polytopes) and polyhedra (3-polytopes).

We define a d-dimensional cell, or d-cell, as a convex polytope in some d-dimensional
subspace of Rn. For convenience, we define the empty cell to have dimension −1. Let c be
a d-cell. Then, an i-dimensional face ci of c, denoted ci ⊆ c, where −1 ≤ i ≤ d, is an i-cell
on the boundary of c. We refer to a 0-cell as a vertex, a 1-cell as an edge, and for a given
d-cell, we refer to its (d − 1)-faces as facets. The diameter of a polytope p is defined as
the maximum distance between any two points on the boundary of p.

A cellular mesh Π is a finite collection of cells such that (a) if c is a cell in Π,
then all faces ci ⊆ c also belong to Π, and (b) the interiors of cells in Π are disjoint (see
Figure 2.1) [Ago05]. The dimension, or order, of a cellular mesh is the maximum of
the dimensions (orders) of the cells forming it. In a cellular mesh, cells that are not on
the boundary of any other cells are called top cells. In a cellular mesh of order d with a
manifold domain, as we will consider here, all top cells are d-cells. Intuitively, a manifold
(with boundary) X is a subset of d-dimensional Euclidean space such that each point x ∈ X
has a neighborhood that is homeomorphic to an open ball or to an open ball intersected by
a plane when x is on the boundary of X. Such a mesh is also referred to as a pure cellular
mesh.

If, additionally, the intersection of any two cells c1, c2 ∈ Π is a lower dimensional
cell on the boundary of c1 and c2, then Π is said to be conforming, or compatible. A
conforming cellular mesh is also referred to as a cell complex. Conforming meshes are
important in many applications since they ensure that there are no cracks or T-junctions
between adjacent cells.

The (combinatorial) boundary of a cell c in a cell complex Π is the set of all cells
of Π, excluding c, that are faces of c. The co-boundary, or star of a cell c, denoted St(c)
is the set of cells in Π containing c in its boundary. Note that, a cell c ∈ Π is a top cell if
St(c) contains only c. The link of a cell c, denoted Lk(c), is the set of all the faces of the
cells in St(c) which are not incident to c.

Two cells are incident to each other if one of them is a face of the other, while they
are k-adjacent if they share a k-face: in particular, two vertices are called adjacent if they
are both incident to a common edge, and two i-cells (i > 0) are called adjacent if they are

9

(a) Intersect (b) Crack (c) Conforming

Figure 2.1: A decomposition is conforming (c) if its cells do not intersect (a) and it is free of
cracks (b).

Figure 2.2: Hypercubes: recursive definition.

(i − 1)-adjacent.

2.1.1 Hypercubic meshes
Hypercubes are a class of polytopes that can be defined in arbitrary dimension. They gen-
eralize line segments (1-cubes), squares (2-cubes) and cubes (3-cubes). A d-dimensional
hypercube, or d-cube, can be defined recursively: A 0-cube is a single point, and a d-cube
is created by extruding a (d−1)-cube one unit along a direction orthogonal to the previous
(d − 1) directions (see Figure 2.2). Thus, d-cubes have twice as many vertices as (d − 1)-
cubes. Unless otherwise indicated, we refer to axis-aligned hypercubes, where all such
directions are parallel with the Euclidean coordinate axes.

An interesting property of hypercubes is that all faces of a d-cube are lower dimen-
sional hypercubes. Given a d-cube h, an i-face of h is any i-cube on the boundary of h,
where 0 ≤ i ≤ d. The number of i-faces of a d-cube is given by

(
d
i

)
2d−i. In particular, a

d-cube h has 2d vertices; (2d−1 · d) edges; and (2 · d) facets. The total number of faces of a
d-cube is thus:∗

d∑
i=0

(
d
i

)
2d−i = 3d. (2.1)

The diameter of a d-cube h is referred to as a diagonal and is defined by a pair of
opposite vertices, that is, two vertices of h whose only common face is h (see Figure 2.3).
Let (v1,v2) be an unordered pair of opposite vertices of a hypercube h with side length s.
Then an edge between v1 and v2 forms a diagonal of h and has length s

√
d. Since faces of

a hypercube are also hypercubes, a diagonal of an i-face of h has length s
√

i.

∗This is a special case of the binomial theorem, see Appendix C.

10

Figure 2.3: Diagonal of a hypercube

A hypercubic mesh is a cellular mesh containing only cubes. Note that a hypercubic
mesh can only be conforming if all cubes are uniform in size. A hypercubic meshes is
referred to as balanced if edge lengths of neighboring hypercubes are either equal or have
a ratio of 2:1. It is k-balanced if all k-adjacent hypercubes have this property.

2.1.2 Simplicial meshes
The simplices are another class of cells that can be defined in arbitrary dimension. They
generalize line segments (1-simplices), triangles (2-simplices) and tetrahedra (3-simplices).
A d-dimensional simplex, or d-simplex, is the convex hull of (d + 1) affinely independent
points in the n-dimensional Euclidean space. An i-face of a d-simplex σ is the i-simplex
defined by any (i + 1) vertices of σ. The number of i-faces of a d-simplex is thus

(
d+1
i+1

)
.

A simplicial mesh Σ is a cellular mesh containing only simplices, that is, all faces of
a simplex σ ∈ Σ belong to Σ, and the interiors of simplices from Σ are disjoint. Similarly,
a simplicial complex is a simplicial mesh that is conforming. A simplicial complex of
order d is referred to as a simplicial d-complex. As with cubes, all faces of a simplex
are simplices. However, in contrast to hypercubic complexes, simplices in a simplicial
complex do not need to have uniform size.

2.2 Nested mesh refinement

A nested refinement scheme consists of rules for replacing a set of cells Γ1 in a cellular
mesh Π with a larger set of cells Γ2 covering the same domain. When Γ1 and Γ2 share
the same combinatorial boundary, the refinement does not introduce cracks into Π, i.e. the
refinement is conforming.

Recall that two cells τ1 and τ2 are similar if there is an affine map A defined by
translations, rotations, reflections and uniform scaling between them, i.e. τ1 = A · τ2. An
equivalence class of similar cells is referred to as a similarity class of cells. The number
of similarity classes generated by successive refinements is an important characteristic of
a refinement scheme, since it enables the analysis of properties of all generated cells. In
particular, it is important in many applications, such as finite element analysis, that the
angles at the vertices are bounded. Such a scheme is referred to as stable [Bey00].

The two primary categories of nested refinement schemes for regularly sampled do-
mains are those built on regular refinement and on bisection refinement [Tra97]. For an ex-
ample of a nested mesh refinement scheme over irregularly sampled domains, see [DP95].

11

(a) Regular refinement of 2-cube (b) Regular refinement of 3-cube

Figure 2.4: Regular refinement of a d-cube h generates 2d d-cubes all incident on the midpoint of
h. (a) A square is decomposed into four squares. (b) A cube is decomposed into eight cubes.

(a) Triangle Refinement (b) Tetrahedral Refinement

Figure 2.5: Regular refinement of a simplex. (a) A triangle is decomposed into four similar
triangles. (b) A tetrahedron is decomposed into four similar tetrahedra and four non-similar
tetrahedra covering an octahedral domain O (blue).

2.2.1 Regular refinement
The regular refinement of a d-dimensional cell τ is defined by adding vertices at all edge
midpoints of τ and decomposing τ into 2d disjoint cells covering τ [BSW83].

Regular refinement on (hyper)-cubic cells generates quadtree and octree decomposi-
tions as well as their higher dimensional analogues, in which all 2d generated hypercubes
share the midpoint of the refined domain as a common vertex (see Figure 2.4).

Regular refinement of a triangle σ generates four triangles that are similar to σ, of
which, three triangles are incident to a vertex of σ, while the fourth triangle is defined by
the three edge midpoints of σ (see Figure 2.5a). However, on simplicial meshes of order
d > 2, regular refinement is not uniquely defined and can generate multiple similarity
classes of simplices. For example, when refining a tetrahedron σ, the four tetrahedra
incident to the vertices of σ are similar to σ, while the remaining four tetrahedra obtained
by subdividing the octahedral domain O defined by the edge midpoints of σ, are not, in
general, similar to σ (see Figure 2.5b).

Regular refinement does not generally create conforming adaptive refinements of
a domain, i.e. where the cells can be at different levels of resolution. The red/green re-
finement scheme [BSW83] introduces a set of irregular closure refinement rules (green)
to augment the regular refinement rules (red) for patching cracks between regular cells at
different resolutions. An additional balancing constraint restricts the degree of decompo-
sition between edge-adjacent cells, thereby reducing the number of green refinement rules
that need to be considered.

12

e

vm

(a) Triangle Bisection

vm

e

(b) Tetrahedron Bisection

Figure 2.6: A simplex is bisected along the hyperplane defined by the midpoint vm (red) of an
edge e (green) and all vertices (blue) not incident to that edge.

2.2.2 Bisection refinement
The second class of nested refinement schemes is defined by bisection refinement, in
which a cell is bisected along a hyperplane into two cells. When the cells are axis-aligned
hyperrectangles which are bisected by axis-aligned hyperplanes, this generates k-d trees
(see Section 3.1.3).

Alternatively, the simplex bisection operation bisects a d-simplex σ along the hyper-
plane defined by the midpoint vm of some edge e and the (d − 1) vertices of σ not incident
to e. We refer to e as the bisection edge of σ. In contrast to regular refinement, which
generates 2d cells, simplex bisection generates only two simplices with disjoint interiors
covering its domain. Figure 2.6 illustrates the simplex bisection rule in 2D and 3D.

Similarly to regular refinement, the decomposition induced by simplex bisection
is not uniquely defined, as it does not specify which edge to bisect. Stable refinement
schemes have been considered in which the bisection edge is determined through geomet-
ric or typographical properties (based on manipulating an ordered set of vertices). Simplex
bisection is not a conforming refinement. Specifically, it introduces cracks between the
neighbors of a bisected simplex σ that are incident to its bisection edge, and the two sim-
plices generated during σ’s bisection (see Figure 2.1b). This can be remedied by ensuring
that all simplices incident to the bisection edge e are refined concurrently.

2.3 Modeling scalar fields

Scientific datasets are often given as a discrete set of points V in a domain Ω ∈ Rd where
one (or more) field values are associated with each point of V . The points in V can be
regularly or irregularly distributed over the domain. In the former case, the data set is
structured, while it is unstructured in the latter case. We assume that the domain Ω of a
field F, denoted ΩF , is a d-dimensional manifold with boundary.

We denote the value of a point p ∈ ΩF as F(p). Such datasets can be modeled
as a mesh ΠF formed by polytopic cells having their vertices at the data points. An
interpolating function defined over the cells of ΠF provides values for all points of ΩF .

We consider models based on simplicial complexes, defined over regularly sampled

13

(a) Isosurface (b) Interval Volume

Figure 2.7: Isosurface (a) and interval volume (b) extracted from a nested triangle mesh.

rectilinear grids, in which linear interpolation is used over the simplices forming the
mesh. The conforming property is important in this application since cracks in non-
conforming meshes correspond to discontinuities in extracted meshes in correspondence
to the boundary of adjacent cells of the underlying mesh.

2.3.1 Isosurfaces and interval volumes
One way of analyzing and visualizing such data sets is through surfaces of constant scalar
value within the field. An isosurface S of isovalue κ within F, denoted as S κ, is defined
as

S κ = F−1(κ) = {x ∈ ΩF |F(x) = κ}. (2.2)

The isosurface S κ passes through all cells having at least one vertex whose associated field
value is greater than κ, and at least one vertex whose value is less than κ. We consider
such cells to be active or non-empty with respect to κ. Otherwise, the cell is considered
to be inactive or empty. Figure 2.7a shows an example of an isosurface extracted from a
nested triangle mesh.

Once a particular isovalue κ is chosen, it implicitly defines a binary-valued sign field
Bκ on the vertices v ∈ V whose bits are set when corresponding scalar values of F are
greater than κ, namely:

Bκ(v) =

1, κ > F(v),
0, otherwise.

(2.3)

An alternative method of visualizing regions of a dataset is through an interval
volume, which is the set of points enclosed between two isosurfaces. Let K :=

[
α, β

]
be

defined as the interval between isovalues α and β, where α ≤ β. Then the interval volume
of isorange K within F, denoted as ΣK or Σ[α,β], is defined as

Σ[α,β] = F−1(
[
α, β

]
) = {x ∈ ΩF |α ≤ F(x) ≤ β}. (2.4)

14

Once a particular isorange K is chosen, it implicitly defines a ternary-valued sign
field RK on the vertices v ∈ V whose values are defined by the relative values of F and K,
namely:

RK(v) =


−1, if F(v) < α,

0, if α ≤ F(v) ≤ β,
1, if β < F(v).

(2.5)

Consequently, an interval volume mesh is bounded by two surfaces: the lower surface
corresponds to the isosurface of isovalue α while the upper surface corresponds to the
isosurface of isovalue β. Thus, an interval volume passes through all cells that intersect
one, or both, isosurfaces, or that lie between the two surfaces. Figure 2.7b shows an
example of an interval volume extracted from a nested triangle mesh.

Note that for a given isorange K = [α, β], if α is below the minimum value in the
range of F (or alternatively, if β is greater than the maximum value in the range of F), then
the lower (upper) surface will not exist. This enables an efficient volumetric representation
for a solid object on three-dimensional domains. Similarly, if α = β, the interval volume
degenerates to a standard isosurface.

Within each simplex σ, the sign field can be used to unambiguously triangulate the
intersection of the isosurface (or interval volume) with σ. We call this intersection the
isosurface (or interval volume) patch embedded within σ. Note that, when using linear
interpolation, the vertices of the patch are only generated along active edges of σ.

2.4 Multiresolution models

Multiresolution models based on the decomposition of a shape into a simplicial mesh
compactly encode a large number of different mesh-based representations of the shape.
A general dimension-independent framework for mesh-based multiresolution represen-
tations, referred to as the MultiTessellation model [DPM97, DM02], has been shown to
encompass the vast majority of multiresolution models developed in the literature. The
three components of a mesh-based multiresolution model of a shape are:

• a coarse mesh Γb, called the base mesh,

• a set of modifications U, and

• a dependency relation R defined on the modifications in U.

Each modification specifies a local change to a mesh. It consists of replacing a subset Γ

of its cells with another set of cells Γ′ and is denoted as u = (Γ, Γ′). Each cell γ in Γ must
either be part of the base mesh, or be created by exactly one modification in U. We are
typically interested in modifications such that both Γ and Γ′ are conforming meshes and
the combinatorial boundary of Γ consists of the same set of cells as that of Γ′.

A direct dependency relation R is defined over the set U of all modifications as
follows: a modification u1 = (Γ1,Γ

′
1) directly precedes a modification u2 = (Γ2,Γ

′
2) if and

only if some cell of Γ′1 is also in Γ2, i.e., if u2 removes some cell inserted by u1. The
transitive closure of the dependency relation can be proven to be a partial order over set

15

U [DM02]. The direct dependency relation can thus be described as a Directed Acyclic
Graph (DAG), in which the nodes represent modifications and the arcs represent direct
dependency links. We call this graph the dependency graph of the model.

Thus, a multiresolution model M = (Γb,U,R) provides a compact way of encoding
all conforming meshes that can be obtained by recursively applying the modifications in
U to the base mesh Γb. Each such mesh is in one-to-one correspondence with a subset
of U that is closed with respect to relation R. A subset U′ of the modifications in U is
called closed if, for each modification u in U′, all predecessors of u, with respect to R,
belong to U′. The collection of all closed sets of modifications in a multiresolution model
M defines the complete set of meshes that can be extracted from M. By applying all the
modifications in U to the base mesh Γb, we obtain the mesh at full resolution described by
M.

2.4.1 Selective refinement
Selective refinement is the basic query operation on a multiresolution model in terms
of which all application-dependent queries can be expressed [LRC+02, CDM+04]. A
selective refinement query extracts the mesh of smallest size from a multiresolution model
based on a user specified predicate referred to as the selection criterion. This is equivalent
to computing the closed set of modifications from U necessary to extract a mesh Σ, of
minimal size, satisfying the specified criterion. The selection criterion can be based
on many factors, including approximation error, field-values (e.g. isosurface extraction),
proximity to an object of interest (e.g. view-dependent and Region of Interest (ROI)
queries) and perception (e.g. screen-space error).

Selective refinement is performed by traversing the dependency graph describing
the multiresolution model in a top-down manner starting from the base mesh; in a bottom-
up manner starting from the mesh at full resolution; or incrementally from an already
extracted mesh. The status of the refinement process is described by a cut on the arcs of
the dependency graph, called the active front, which separates the set of modifications that
have been applied from those that have not.

16

Chapter 3

State of the art

In this chapter, we review the state of the art approaches for decomposing a regularly
sampled domain, with an emphasis on those based on nested simplex bisection over
a regular grid. Additionally, we review marching methods for isosurface and interval
volume extraction and hierarchical approaches for scalar field visualization.

Nested meshes have been used for various applications within the field of visual-
ization. Examples include quadtrees and octrees formed by squares and cubes [Sam06],
tetrahedral meshes generated by the red/green tetrahedron refinement [GLE97, Bey00] or
meshes formed by tetrahedral and octahedral elements [GG00].

When a nested mesh is used as a spatial index for point data the decomposition can
partition the data or the domain [Sam06]. When the subdivision partitions the data, the
resulting structure depends on the insertion order of the elements. However, when the
partitioning is based on the domain, the resultant structure is independent of the insertion
order. In Sections 3.1 and 3.3 we focus primarily on approaches that regularly decompose
a domain. We present a more comprehensive survey on the decomposition models and
applications of simplex and diamond hierarchies in [WD10d, WD11], where we interpret
these structures through the notions we introduce in this thesis.

We enumerate and classify the approaches according to whether their primary func-
tion is as a spatial partition of the domain, as a variable resolution representation or as
a multiresolution device. The recent survey by Knoll [Kno06] classifies octree-based
approaches according to their applications for visualization, including surface extraction,
Direct Volume Rendering (DVR) and ray tracing. It discusses some approaches to point
location and neighbor finding on pointerless octrees. In [WD08a], we classify approaches
for the analysis and visualization of time-varying volume data by distinguishing between
approaches that treat the temporal dimension as slices of a three-dimensional domain and
those that treat the temporal and spatial dimensions equally, yielding a four-dimensional
representation of the domain.

3.1 Domain decompositions

In the following, assume we have a domain Ω ⊂ Rn, which we will partition into a set of
(possibly overlapping) cells covering the domain. Each such cell c acts as a container or
bucket for data located within the domain of c, such as the points of a scalar field. Cells
can have their own internal data structure to organize their indexed items. For example, a
cell’s data structure could be an (unsorted) linked list of items or it could be more complex,
such as a sorted tree.

17

3.1.1 Uniform grid
Conceptually, the simplest way to subdivide a domain is to partition it into a grid con-
taining (hyper)-rectangular cells of uniform size. Since the cells are uniform in size, and
contain the same volume, they can be implicitly indexed. Although this method implicitly
partitions all of Rn, optimizations can be utilized for bounded domains.

For example, assume we are dealing with a 2D domain covering [0,m] × [0, n],
where m, n ∈ N+, and each cell covers a 1× 1 square. Then the lower left corner of the cell
c covering an arbitrary point p = (x, y) in the domain can be easily determined from the
integer component of x and y. E.g. if p = (5.78, 4.23), then p is located in the cell whose
lower left coordinates are (5, 4). A straightforward data structure for a bounded uniform
grid is to store the elements in a multidimensional array.

When dealing with sparse datasets within bounded or unbounded domains, hashing
can provide an efficient data structure. However, the efficiency is highly correlated with
the appropriateness of the hashing function for the data distribution.

Alternatively, when the data is not uniformly distributed, a more efficient represen-
tation might be obtained by translating the grid lines along the axes. In such a case, the
data is no longer accessible with constant access, and an access structure such as linear
scales [Sam06] can be used to efficiently locate points.

3.1.2 Quadtrees, octrees and 2d-trees
2d-trees are hierarchical spatial decompositions of Rd based on the regular refinement
of hypercubes. Let Ω be the (bounded or unbounded) domain of the 2d-tree T , then the
interiors of the d-cubes of T are pairwise disjoint and cover Ω.

A tree-based nested decomposition of the domain can be defined recursively. Let
the root of the tree be the cell covering a hypercubic domain Ω ∈ Rd. For a tree rooted at
node k, let its children be the 2d d-cubes with disjoint interior where the vertices of each
child’s diagonal contains one of the corner vertices of k and an interior point p of k. The
2d children of a node k are referred to as siblings and k as their parent. If p is always
chosen as the midpoint of k, as we consider here, then the tree is regular.

We now define some properties of the 2d-tree hierarchy. Let Level(k) be the level of
a node k. Then the level of a child node c of k is define as Level(k) + 1, and the level of the
root r of T is defined as Level(r) = 0. The maximum level LevelMax(T) of an 2d-tree T is
defined as the maximum of the levels of all nodes in T , i.e, LevelMax(T)= max{Level(k)},
where k is a node of T .

A node k in an 2d-tree T is considered to be a leaf node if it has no descendants in
T , otherwise it is an internal node. If all leaf nodes of a 2d-tree T have the same level,
then T is complete. Similarly, the resolution of the tree is defined as the distance between
neighboring leaf nodes of level LevelMax(T). If all leaf nodes in a 2d-tree T have the
same resolution, then we say that T has uniform resolution, otherwise, T has variable
resolution.

If the intersection of nodes k and j is a facet (i.e. a (d − 1)-dimensional face) of k or
of j then k and j are denoted as facet neighbors or simply as neighbors. If the intersection
of the interiors of nodes k and j, where Level(k) < Level(j) is nonempty then k is called

18

an ancestor of j and j is a descendant of k.

3.1.2.1 Balanced 2d-trees

In some applications, it can be useful to limit the variability of subdivision between neigh-
boring cells. A balanced 2d-tree is a generalization of the restricted quadtree, introduced
by van Herzen and Barr [VHB87], where the level of neighboring cells can differ by
at most one. Sivan and Samet [SS92, Siv96] first use such decompositions as a spatial
data structure, specifically, for modeling terrain datasets, and study different rules for
subdividing the squares into triangles.

Bern and Eppstein [BEG94] define a balanced quadtree as a mesh in which orthog-
onally adjacent nodes cannot be more than one level of refinement apart, and prove that a
balanced quadtree in dimension d is at most a constant factor larger than its unbalanced
counterpart. They also prove that simplices generated by using a Delaunay triangulation
of a balanced hypercubic mesh have bounded angles. Moore [Moo95] identifies different
types of neighbors on which to balance a nested hypercubic mesh and uses this to find op-
timally tight bounds on the cost of balancing quadtrees and an upper bound for balancing
nested hypercubic meshes of O(3d) in three and higher dimensions.

Due to the increasing size of scientific datasets, there have been several out-of-
core [TO04, TOL04] and parallel [SSB08] algorithms introduced for balancing large oc-
trees.

An appropriately defined set of local refinements of the nodes of a balanced 2d-tree
can be used to patch the cracks in the decomposition. In 2D, these meshes can be patched
using bisection-based rules [VHB87, SS92, Siv96, RHSS98] or through Delaunay-based
rules [ZS01,RMSS01], where the triangulation cases are explicitly defined. An advantage
of the latter in 2D, is that it does not require the insertion of extra vertices, referred to
as Steiner vertices [dBSvKO97], to generate conforming meshes. Figure 3.1 illustrates
the possible Delaunay-based and bisection-based cases for triangulating a square, with
vertices at the midpoints of some of its edges.

In 3D, Plantinga and Vegter [PV07] propose a Delaunay-based triangulation for
edge-balanced octrees in which two cubes sharing an edge must be balanced. In this
approach, the faces are triangulated according to the 2D Delaunay cases (e.g. [ZS01])
and each cube is tetrahedralized by connecting the face triangulation to the cube’s center.
Greaves et al. [GMBW96,GB99] propose bisection-based cases in 3D, but do not provide
details of the triangulation.

Triangulation cases for the facet-balanced hypercubic meshes of arbitrary dimension
were proposed by Castelos et al. [CNS+06] in the Ja

1 triangulation. In this scheme, a vertex
is inserted at the center of every hypercube and the simplices within a hypercube h are
defined by the edges connecting this vertex to the vertices on the boundary of h. Note
that facet-balanced meshes are the least restricted of the balanced meshes, and that lower-
dimensional faces of facet-balanced meshes can have neighbors that differ in resolution
by more than a factor of two (see Figure 10.1 in Chapter 10).

In Chapter 10, we introduce a hierarchy on balanced hypercubic meshes and pro-
pose a bisection-based triangulation for edge-balanced hypercubic meshes of arbitrary
dimension, based on our model and encoding scheme for diamond hierarchies. Given an

19

(a) Delaunay-based triangulations of a square

(b) Bisection-based triangulations of a square

Figure 3.1: Unique triangulation cases (up to symmetry) for squares (2-cubes) based on Delaunay
triangulation (a) and bisection triangulation (b).

edge-balanced hypercubic mesh, the Ja
1 triangulation produces the same domain decompo-

sition as our algorithm, but is represented using simplices rather than diamonds, and thus
requires more storage space.

Alternatively, conforming representations have been proposed for generating adap-
tive quadrilateral or hexahedral meshes from a balanced quadtree or octree, respectively,
based on explicit decomposition rules for neighboring cells of different sizes [Sch96].
These rules are based on bisection (2:1) or trisection (3:1) of the hypercube edges. Re-
cent work has focused on simpler decompositions and implementations for quadrilat-
eral [Gar09] and hexahedral meshes [ISS09]. To the best of our knowledge, such decom-
position rules have not been generalized to higher dimensional domains.

Compared to simplicial decompositions of balanced hypercubic meshes, conforming
adaptive quadrilateral meshes and hexahedral meshes can be generated using fewer cells.
However, in cases where values must be interpolated within each cell, the latter require
multi-linear interpolation (based on 2d values) while the former admit linear interpolation
(based on only (d + 1) values).

3.1.2.2 MX-2d-trees

In some applications, it is important to store all data at the maximum resolution of the
2d-tree. However, to reduce the storage requirements, empty nodes can be aggregated. Let
T be a 2d-tree with LevelMax(T) = `. Then T is an MX-2d-tree∗ if all leaf nodes containing
data are located at level ` [HS79, Sam06]. Let j be a leaf node in an MX-2d-tree that
does not contain data, then Level(j) ≤ `. An MX-2d-tree can be generated in a bottom-up
manner from a complete 2d-tree by merging 2d siblings that do not contain data. If any of
the siblings or one of their descendants contain data they cannot be merged.

∗The prefix MX is based on an analogy to sparse matrices, in which adjacent zeros can be aggre-
gated [Sam06].

20

Since all nodes containing data are leaf nodes at the maximum resolution, MX-2d-
trees can be considered to be uniform resolution.

3.1.2.3 PR-2d-trees

If we remove the restriction that leaf nodes containing data need to all be at the maximum
resolution, then we arrive at a variable resolution 2d-tree called the Point Region-2d-tree
(PR-2d-tree) [Sam06]. In a PR-2d-tree, leaf nodes typically contain a single item and are
located at the deepest level containing no other data below it. Alternatively, nodes in a
bucket PR-2d-tree can contain a predefined number of items [Sam06]. Thus, PR-2d-trees
typically require significantly fewer nodes to represent the same dataset as an MX-2d-tree.

One disadvantage of PR-2d-trees is that since the decomposition process is regular
the maximum resolution can (in the worst case) be determined by the minimum distance
between two data items. Thus certain data distributions can yield unbalanced trees.

3.1.2.4 Pyramids

2d-trees typically contain all data in leaf nodes, which are accessed via the internal nodes.
Some applications require aggregate data to be stored in internal nodes as well. When all
leaf nodes are contained at the finest resolution, this structure is called a pyramid. When
some leaf nodes are located at coarser resolutions, we denote this structure as a truncated
pyramid.

Such structures can accelerate queries e.g. by culling irrelevant regions of the do-
main. Another application is in approximating the data contained deeper within the tree.
In such a case, the structure is considered a multiresolution representation of the data.

3.1.3 K-d trees
Another popular recursive decomposition of a (hyper)-rectangular domain Ω is to subdi-
vide each node into two (hyper)-rectangles along an axis aligned hyperplane. Such a tree is
referred to as a k-d tree [Ben75]. A benefit of k-d trees is that they are always binary trees
regardless of the dimension of the domain Ω. Furthermore, since nodes subdivide into
two nodes rather than 2d nodes, k-d trees are better able to adapt to the data distribution
than 2d-trees. The choice of axis to subdivide can be determined from the data or can be
cycled. Due to the subdivision rule, k-d trees are rarely conforming.

3.1.4 Nested simplicial meshes
Recall from Section 2.2 that the two primary categories of nested simplicial meshes are
those based on regular refinement or on simplex bisection, and that both approaches can
lead to unstable refinement if the simplicial decompositions are not carefully chosen.
Thus, researchers have proposed geometric refinement rules, which use the geometry of
the simplex to determine the decomposition, and typographical rules, which manipulate
the order of the vertices of the simplex to determine the decomposition. In the former
case, the resulting decompositions are not affine invariant, while the latter case can require

21

an expensive initialization process. A comprehensive review of simplicial refinement
strategies is presented by Bey [Bey00].

3.1.4.1 Regular refinement

Regular refinement always generates stable triangle meshes in which all triangles are
similar to their generating triangle. In 3D, the octahedral domain O defined by the edge
midpoints of a refining tetrahedron σ requires a decomposition into four tetrahedra that are
not similar to their generating triangle in the general case (see Figure 2.5b). Zhang [Zha95]
introduces a geometric refinement rule in which O is decomposed into four tetrahedra
along its shortest diagonal. This generates a stable refinement when the angles of the initial
mesh are non-obtuse. Other geometric choices, such as refinement along the octahedron’s
longest diagonal, do not yield stable refinements. Bey’s typographical scheme [Bey95]
is based on maintaining a specific vertex ordering during refinement. An interesting
modification is the tetrahedral/octahedral regular refinement scheme [GG98,GG00,CQ06]
in which the octahedra generated by regular tetrahedral refinement are also treated as
primitives. In this scheme, each tetrahedron is refined into four similar tetrahedra and
a single octahedron, while each octahedron is decomposed into six similar octahedra
incident to its vertices, and eight similar tetrahedra corresponding to its truncated triangular
faces.

Bey shows [Bey00] that his tetrahedral refinement scheme [Bey95] as well as the 2D
scheme of Banks et al. [BSW83] are instances of a d-dimensional typographical scheme
introduced by Freudenthal [Fre42]. Moore [MW95] provides a consistent labeling and
simplex enumeration algorithm for the 2d simplices generated by regular refinement.

Since regular refinement does not generate conforming adaptive refinements of a
domain, Banks et al. [BSW83] introduce the red/green refinement scheme in 2D, in which
the regular refinement rules (red) are augmented by a set of irregular closure refinement
rules (green) to patch cracks between regular cells at different resolutions. An additional
balancing constraint restricts the degree of decomposition between edge-adjacent cells,
thereby reducing the number of green refinement rules that need to be considered. This
scheme has been extended to tetrahedral meshes in [Bey95]. The recent RGB subdivision
scheme for triangle meshes [PP09] introduces blue refinement rules, to transition between
triangles generated by regular (red) and irregular (green) refinements. The addition of the
blue refinements rules enables red and green operations to be applied in arbitrary order.

3.1.4.2 Simplex bisection

In the case of simplex bisection, researchers have also proposed conforming refinement
schemes to implicitly determine the bisection edge via geometric [Riv84, Riv91, PC00]
or typographical [Mit91,Bän91,Mau95,Tra97] bisection rules. Rivara’s geometric Longest
Edge Bisection (LEB) scheme over triangle [Riv84] and tetrahedral meshes [Riv91] chooses
the longest edge of the simplex as its bisection edge, while Mitchell’s typographical newest
vertex bisection [Mit91] in 2D chooses the edge opposite the most recently introduced
vertex. This edge can be implicitly determined through a consistent ordering of the ver-
tices, where, e.g., the newest vertex is always in the final position. This scheme follows

22

the pioneering work of Sewell [Sew72, Sew79] and has been generalized to tetrahedral
meshes as well [Bän91, Kos94, LJ95, AMP00].

Maubach [Mau95] and Traxler [Tra97] generalize these approaches to d-dimensional
domains through an implicit typographical scheme (different from, but equivalent to [Mit91]
in 2D) that cycles between d rules. In particular, Maubach proves that, when applied to a
hypercubic domain subdivided along its diagonal into d! simplices, his scheme generates
at most d similarity classes of simplices. We refer to nested meshes containing only sim-
plices generated by Maubach’s bisection scheme over a regular grid as Regular Simplex
Bisection (RSB) meshes and provide a detailed overview of this scheme in Section 4.2.2.

Such approaches differ from red/green refinement approaches [Bey95] by requiring
only one set of regular refinement rules (red) but not an additional set of irregular re-
finement rules (green) to guarantee conforming triangulations. Meshes generated through
bisection are significantly more adaptive than those generated by regular refinement since
each bisection only generates two new elements while each regular refinement generates 2d

new elements. Thus, the refinement rate for bisection can be viewed as being independent
of the dimensionality of the domain [Pas02].

On the other hand, for irregular simplicial complexes, it is unknown if all simplicial
d-complexes, d > 2, admit a typographical simplex bisection scheme [NSV09]. Kos-
saczký [Kos94] proposes an initialization refinement algorithm to ensure that arbitrary
tetrahedral meshes are admissible, although this increases the number of simplex classes.
Stevenson [Ste08] generalizes this approach to higher dimensions.

The containment hierarchy among the simplices generated by regular simplex bisec-
tion induces a natural tree representation, in which the nodes are simplices and the two
children of a simplex σ are the simplices generated by bisecting σ. This relationship can
be captured using a binary tree, often referred to as a bintree [DWS+97,EKT01,LRC+02],
whose root is one of the d! simplices subdividing a hypercubic domain Ω along its di-
agonal. Thus, a nested RSB mesh can be modeled as a forest of d! binary trees, which
we call a hierarchy of simplices. This model is often referred to as a hierarchy of (right)
triangles when the domain is two-dimensional, and as a hierarchy of tetrahedra for three-
dimensional domains. If the tree is encoded using an array, the parents and children of
a tetrahedron can be implicitly determined by their array indices. This representation is
used in [ZCK97, GR99, GP00, LDS01, MDM04].

We are often interested in generating crack-free, or conforming, meshes, since cracks
in the mesh correspond to discontinuities in scalar fields defined on the vertices. Meth-
ods of ensuring continuity have been proposed based on symbolic neighbor-finding op-
erations [Heb94, LDS01], saturated error metrics (in which the errors are monotonic
with respect to the hierarchical dependency relation) [OR97, Paj98, GRW00] or an im-
plicit clustering of tetrahedra sharing a common bisection edge into a diamond primi-
tive [DWS+97, GDL+02, DM02]

A pointer-based explicit neighbor-finding algorithm for a hierarchy of triangles is
presented in [LRC+02]. Hebert [Heb94] introduces a symbolic neighbor finding operation
for tetrahedra within a nested tetrahedral mesh Σ. Thus, tetrahedra in Σ no longer require
pointers to their four adjacent tetrahedra in Σ. However, since Hebert encodes the bintree
hierarchy using pointers, some neighbor-finding operations require time logarithmic in the
size of the mesh.

23

When a nested RSB mesh is encoded as a forest of simplex trees, each simplex
can be indexed through a location code [Sam90, Sam06]. Assuming that each child of
a simplex is labeled using a single bit as (i.e. 0 or 1), a location code of a simplex σ is
encoded as a tuple containing the label of σ’s root simplex, its depth in the bintree, and a
binary string indicating the traversal path from the root of the bintree to σ. Location codes
enable pointerless data structures such as hash tables and B-trees to index the simplices.

Lee et al. [LDS01] introduce a pointerless neighbor finding algorithm for hierarchies
of tetrahedra based on location codes. In this scheme, each neighboring tetrahedron’s
location code can be found in worst-case constant time through hardware bit-shifting
operations. This enables the extraction of tetrahedral meshes satisfying a given unsaturated
error criterion using fewer tetrahedra in the same amount of time as it takes to satisfy a
saturated error criterion. Lee et al. extend this approach to constant-time neighbor finding
in four-dimensional hierarchies of pentatopes in [LDS04].

Atalay et al. [AM04, AM07] extend the symbolic approach of Hebert [Heb94] and
Lee et al. [LDS01, LDS04] to arbitrary dimensions. They use hardware bit-shifting to
find each neighbor’s location code in O(log d) time, and use the local subtree of simplices
within a hypercubic domain to find the vertices of a simplex in constant time.

Maubach [Mau96] proves that the set of neighbors can be characterized by a con-
nected (d − 2)-surface and conjectures that this surface is simply-connected. Although the
neighbor-finding algorithm must run O(

∣∣∣Neighbors(σ)
∣∣∣) times for conforming bisections

to a simplex σ, to the best of our knowledge, there have been no previous attempts to
describe the number of such neighbors of a d-simplex on a regular grid. In Chapter 4, we
prove that there are O(d!) such neighbors, and cluster these into O(d) sets of simplices
that are simultaneously generated for efficient extraction and encoding of conforming
modifications to an RSB mesh.

Gerstner et al. [GP00] pre-compute a saturated error for each vertex splitting a
tetrahedron in a three-dimensional RSB mesh. The saturation condition implicitly forces
all longest-edge neighbors to split, thus ensuring a conforming mesh. This scheme does
not enable general navigation on the extracted meshes but it is suitable for parallel imple-
mentation [GR99] and front-to-back traversal [Ger02].

An alternate approach is to cluster the set of d-simplices that share a bisection edge
into a new primitive, referred to as diamonds. Efficient encodings of diamonds have been
developed in 2D [LP02, HDJ05] and 3D [GDL+02], where the regularity of the updates
and vertex distribution enables an implicit encoding of the geometric and hierarchical
relationships among the simplices.

Pascucci’s Slow Growing Subdivision (SGS) scheme [Pas02] generalizes the di-
amond subdivision paradigm to general d-dimensional meshes. In the SGS scheme, a
d-dimensional cell of class i is subdivided by inserting a vertex v at its center and replaced
with pyramid-shaped cells with apex at v and bases defined by its facets. All pyramids
sharing the same (d − i − 1)-dimensional face of a class 0 cell are then merged into a
new cell of class (i + 1) mod d. This paradigm provides intuition for the subdivision pro-
cess, but not for the geometric shape of a diamond or the complexity of its corresponding
simplicial complex.

We generalize the notion of diamonds to arbitrary dimensions as a cross product
of two simplicially decomposed hypercubes, providing a constructive definition for all

24

classes of diamonds (see Chapter 4 and [WD09a]). We introduce the supercube as a high-
level primitive for regular simplex bisection (see Chapter 5 and [WD08c,WD09b,WD11]).
Supercubes provide a means of analyzing all the relationships among the simplices and
diamond generated through successive RSB operations, as well as an efficient means of
associating information with sparse subsets of these elements. We introduce a pointerless
encoding for diamonds as well as an implicit representation for the multiresolution hierar-
chy in Chapter 6. Once a conforming RSB mesh is extracted, there are many applications
which require efficient navigation of the mesh’s local connectivity. We introduce algo-
rithms for navigating 2D and 3D diamond meshes in Chapter 8 based on only the presence
or absence of vertices and diamonds within the mesh.

3.2 Marching cells

3.2.1 Isosurfaces
A popular divide and conquer approach to isosurfacing scalar fields is the Marching Cubes
algorithm [LC87]. In this, and related algorithms (see [NY06] for a recent survey), the
domain is subdivided into cubic (or, more generally, polytopic) cells which are contoured
locally.

This is accomplished by first labeling the vertices of each cell based on the relative
value of their field values compared to a specified isovalue. Edges that intersect the
isosurface are referred to as active, and their vertices have different labels. Active cells
contain at least one active edge. The isosurface patch extracted from an active cell consists
of one or more simply connected triangulated polygons whose vertices lie on the active
edges. A globally conforming isosurface is achieved by ensuring that each isosurface
patch is crack-free and that the interface between adjacent patches are crack-free.

The vertex generation and patch triangulation steps are typically accelerated through
precomputed lookup tables based on the configuration of a cell’s vertex labels. Assuming
a predetermined order for the vertices of a cell c, the bitpattern of c is the ordered list
of labels of c’s vertices. When the cells are homogeneous this can lead to an efficient
encoding in a lookup table, i.e. for cubic cells defined by 8 vertices, this leads to 28 = 256
cases.

To simplify the analysis and ensure that the cases have the correct geometric and
topological structure, it is common to classify all possible configurations of isosurface
patches that can occur within a cell. These approaches typically use a combination of
symmetry, reflection and topological considerations to reduce the configuration space to a
restricted number of cases. Ambiguous configurations [Dur88], i.e. those that admit more
than one valid triangulation, can be resolved using higher order interpolation functions
[NH91, Nie03], gradient calculations [WVG90] or neighboring cells [Nie03].

The Marching Tetrahedra approach [PT90, WVG90, NB93, TPG99, Pas04] operates
on tetrahedral meshes, which do not suffer from ambiguities due to the use of linear
interpolation. However when the tetrahedra are obtained through subdividing cubic cells
(into 5 or 6 tetrahedra each), the output surface will have more triangles than a surface
generated using Marching Cubes (up to a factor of four [CSA03]). Irregular tetrahedral
meshes can yield variable resolution isosurfaces.

25

Other Marching methods include the Marching Octahedra and Modified Marching
Hexahedra methods [CSA03], which operate on Body Centered Cubic (BCC) lattices and
the Generalized Marching Method [HSSZ97] which operates on meshes with more than 2
vertex categories, as found in segmented volumes.

Algorithms for isosurface extraction from 4D scalar fields have also been pro-
posed [RH99, BWC00], although they disagree on the number of cases for the 4-cube.
These differences are reconciled in [BLS04], in which marching approaches are distin-
guished based on the types of cells, the dimension, the number of vertex categories and the
symmetries used. Weigle and Banks [WB96, WB98] have proposed a recursive algorithm
for isosurface extraction from simplicial meshes, counting 5 possible different cases for
a 4-simplex. Bhaniramka et al. [BWC04] provide marching cases for convex cells of
arbitrary dimensions.

An alternative set of intersection cases can be created for surfaces dual to those
of the marching cubes, where a single vertex is generated within each active cell, and
a single quadrilateral is generated for each intersected edge [Gib98, JLSW02]. A dual
marching tetrahedra approach was recently proposed by Nielson [Nie08]. Since vertices
can be freely placed within cells (rather than strictly on edges), dual methods can generate
better approximations using fewer triangles. However, care must be taken to ensure that
the resultant surfaces remain manifold [SJW07].

3.2.2 Interval volumes
Interval volumes were introduced concurrently by by Guo [Guo95] and by Fujishiro et
al. [FMS95]. Guo [Guo95] introduced interval sets as a bridge between direct volume
rendering (DVR) and indirect volume rendering (e.g. isosurface extraction) techniques. In
this method, the boundary surfaces are approximated using alpha surfaces [EM94] and
the volume is triangulated using a Delaunay triangulation.

Fujishiro et al. [FMS95, FMST96] extract interval volumes from cubic cells using
an extension of the Marching Cubes algorithm [LC87]. Their cases are defined for the
half-regions containing a single surface. When a cell contains both surfaces, mesh patches
are generated on the fly by intersecting the two half-regions. Global mesh consistency is
ensured through the use of Nielson and Hamann’s asymptotic decider [NH91] cases rather
than the original marching cubes cases.

Nielson and Sung [NS97] offer a case-based lookup table for interval volumes over
tetrahedral meshes. They reduce the configuration space to 15 unique cases and provide a
consistent global triangulation of the polyhedral interval volume patches.

Bhaniramka et al. [BWC00] create interval volume cases for cubes by first extract-
ing an isosurface from a four dimensional hypercube and then projecting the isosurface
into an interval volume in the cube. This concept is extended to 4D interval volume ex-
traction using 5D isosurfaces in [JSW03]. Bhaniramka et al. [BZX+04] further extend this
dimension lifting idea to the extraction of interval volumes from convex cells of arbitrary
dimension and introduce several new visualization techniques for static and time-varying
interval volume datasets. Since it is not feasible to represent all possible cases, they use
lazy evaluation to dynamically generate cases on demand and cache the most frequently
observed cases [BWC04].

26

Zhang et al. [ZBS03] introduce a technique for extracting adaptive interval volume
meshes from volume data. Octree cells containing a boundary of the interval are trian-
gulated using a modified dual contouring technique [JLSW02], while cells completely
within the interval are triangulated by inserting additional vertices, referred to as Steiner
points.

3.3 Hierarchical data structures for scientific visualization

Due to the size of extracted isosurfaces, there has been much research on accelerating the
extraction process and on simplifying the resulting meshes.

There are two significant efficiency issues related to the marching cubes style of
isosurface extraction. First, the algorithm wastes a significant amount of time processing
empty or inactive cells, i.e. cells that do not intersect the isosurface. Second, the ex-
tracted isosurface is typically over-triangulated, i.e. it contains too many triangles. This is
problematic since it increases processing costs in all downstream applications, including
rendering, without improving the fidelity of the surface. Thus, interactivity with such
meshes can be limited.

3.3.1 Hierarchy as spatial access structure
The first issue can be remedied by creating an index of the active cells. There are two
predominant indexing techniques: hierarchical spatial indexing and value indexing. The
most widely-used spatial indexing technique is Wilhelms and Van Gelder’s Branch-On-
Need Octree (BONO) [WVG92] (sometimes referred to as the Min-Max octree), which
provides hierarchical access to active cells by aggregating field values within nested re-
gions and associates with each node of the octree the minimum and maximum field values
of its descendants. BONO efficiently handles datasets whose dimension are not powers
of 2, and uses a caching mechanism to minimize field value lookups of neighboring cells.
Patches are only extracted from cells at the full resolution, thus ensuring the extraction of
the same exact mesh as the original marching cubes algorithm [LC87].

In contrast, the value-based partitioning approaches [LSJ96, SHLJ96, CMM+97] at-
tempt to minimize isosurface extraction time by reorganizing the data into a two-dimensional
span space on the range of the field. In span space techniques, each cell is projected into
a two-dimensional point whose coordinates are the minimum and maximum field values
spanned by the cell. Efficiency is achieved through optimized data structures on the span
space rather than the spatial coordinates of the cells. The Near Optimal IsoSurface Ex-
traction (NOISE) algorithm [LSJ96] uses a k-d tree to efficiently extract an isosurface
from a 3D volumetric data set in O(

√
n + k) time, where n is the total number of cells,

and k is the number of active cells. Isosurfacing in Span Space with Utmost Efficiency
(ISSUE) [SHLJ96] improves the performance of the NOISE algorithm and provides a
parallel algorithm by subdividing the span space into an axis-aligned lattice where each
tile contains approximately the same number of cells.

Interval trees [Ede80] are another efficient method for performing range queries, and
have been used by van Kreveld [VK96] to extract isocontours from triangulated terrain

27

data. Cignoni et al. [CMM+97] use interval trees to index cells in span space, and prove
that their isosurface extraction algorithm operates in optimal O(log n + k) time.

3.3.2 Multiresolution field representations
In this section, we review multiresolution representations for scalar field visualization
with a focus on approaches for interactive terrain rendering and isosurface extraction. We
conclude with a review of the few techniques dealing with higher dimensional datasets
(i.e. d ≥ 4).

3.3.2.1 Two dimensional domains

The ability to extract variable-resolution representations of the terrain, such as having high
resolutions in selected areas of interest or along a view frustum is a fundamental issue in
interactive terrain processing. View-dependent representations are important for achieving
interactivity in rendering. The recent survey by Pajarola and Gobbetti [PG07] presents
a comprehensive review of approaches for interactive rendering of regularly sampled
terrain datasets, including those based on RSB triangles and diamonds. Here, we discuss
techniques based on RSB triangles and diamonds, as well as representations based on
incomplete diamond hierarchies to deal with data points at the vertices of a sparse regular
grid. We first review approaches applying either on a triangle-based or on a diamond-based
hierarchy to a complete regular (2N + 1)2 grid of scalar values.

Evans et al. [EKT97, EKT01] introduce a representation of a terrain based on a
hierarchy of triangles that they call Right Triangulated Irregular Networks (R-TINs).†

They use location codes for encoding the nodes of a hierarchy of triangles and observe that
conforming RSB meshes are balanced, i.e. neighboring simplices can differ in refinement
depths by at most one. Specifically, neighbors along a triangle’s hypotenuse can be at
most one refinement depth higher in the hierarchy, while neighbors along the other two
edges can be at most one refinement depth lower in the hierarchy. Thus, a single bit per
edge is sufficient to determine which of the two possible triangles is present in the mesh.
To aid in mesh extraction, they associate an error with each triangle, and note that this
requires approximately four times as much storage as associating errors with the vertices.

Lindstrom et al. [LKR+96] were the first to consider the simplification dependency
relation among the vertices of a nested RSB mesh. They define a triangle’s split vertex as
the vertex introduced during triangle bisection. Two triangles are fused when the inverse
of simplex bisection operation is applied to them. Fusion removes the two children of a
triangle and replaces it with their parent by removing the split vertex.

They observed that each split vertex corresponds to triangles in two different branches
of the hierarchy of triangles (see Figure 3.2), and that cracks are introduced into the mesh
if only one of those branches is fused. They propose a conforming triangle fusion op-
eration that replaces both pairs of sibling triangles with their parent triangles (i.e. from
Figure 3.2b to 3.2a).

For out-of-core access to large datasets, they store the terrain as a set of square
blocks, each containing (2k + 1)2 samples (for some k), where samples on the boundaries

†A TIN (Triangulated Irregular Network) is an irregularly sampled triangle mesh describing a terrain.

28

of each block are duplicated. Their error metric only takes the value of the split vertex
into account and is thus unable to guarantee global error bounds on the extracted mesh.
For efficient rendering, they encode the entire mesh as a generalized triangle strip (i.e. one
that allows swapping of vertices).

(a) Fused (b) Split

Figure 3.2: A pair of triangles in an RSB must be bisected concurrently if they share the same
bisection edge (blue edge in (a)). The split vertex (hollow blue) of the triangles in (a) depends
on the four split vertices (hollow white) of the triangles in (b). Filled vertices belong to triangles
while hollow vertices are the midpoint of a triangle’s bisection edges.

In the Real-time Optimally Adapting Meshes (ROAM) approach, Duchaineau et
al. [DWS+97] introduce a view-dependent incremental selective refinement for a hierarchy
of triangles. Recall from Section 2.4.1 that incremental selective refinement is a variant of
the basic selective refinement query in which the initial mesh can be a previously extracted
RSB mesh. They also introduce split and merge operations, corresponding to conforming
triangle bisection and fusion operations, respectively, and note that any RSB mesh can be
obtained from any other one via a series of merges and splits. Frame-to-frame coherence
is supported through the use of a dual queue system, where one queue holds mergeable
triangles and the other holds refineable triangles.

Due to the shape of its domain, they introduce the term diamond to refer to the two
triangles sharing a split vertex (see Figure 3.2a). To reduce visual artifacts incurred by
refinements, they implement a geomorphing operator, that gradually moves the split vertex
(which we refer to as its central vertex) of a diamond into its new location.

Later work, such as ROAM Using Surface Triangle Clusters (RUSTiC) [Pom00]
Cached Aggregated Binary Triangle Trees (CABTT) [Lev02] and others [CGG+03a,HDJ05,
BGP09], exploits the graphics hardware more efficiently through the use of batched up-
dates to an RSB mesh. Specifically, in these methods, each macro update to the model
corresponds to the insertion of triangles from several hierarchy depths lower in the hier-
archy. These batched triangles are typically preprocessed into triangle strips for efficient
streaming to the graphics card. Despite increasing the number of triangles required to sat-
isfy a given selection criterion, these methods are able to reduce the processing overhead
on the CPU.

Pajarola [Paj98] considers the refinement dependency relation for triangle bisection
over a nested RSB mesh.‡ By reversing the dependency relation arcs introduced by

‡Although this method is called Restricted Quadtree Triangulation, it uses the vertex dependency relation
of diamonds, and the underlying triangulation does not correspond to a quadtree, so we classify it as a
diamond-based approach.

29

(a) Original (b) Level 1 (c) Level 2 (d) Level 3

Figure 3.3: Batched triangulations at three levels of resolution. Each additional level has an
increased complexity of 2d simplices.

Lindstrom et al. [LKR+96], he observes that conforming modifications occur when both
triangles sharing a base vertex are bisected concurrently. Thus, each vertex depends on
the split vertices of two triangles higher in the hierarchy.

Pajarola provides a few simple operations to extract a vertex’s level as well as the
orientation of its corresponding bisection edge directly from its coordinates. Specifically,
the level of a vertex can be derived from its spatial location by finding the index of the
least significant non-zero bit in the binary representation of its x and y coordinates. If both
the x and y coordinates contain a non-zero bit at this location, the vertex is located at the
center of a quadtree node. Otherwise, it is located at the midpoint of one of its edges.

Puppo [Pup98] describes how the vertex dependency relation can be viewed as a
special case of the MultiTesselation (MT) framework of De Floriani et al. [DPM97].

Hebert [Heb98] models a nested RSB mesh in terms of two interlaced quadtrees:
The standard axis-aligned quadtree and a quincunx quadtree, rotated 45 ◦ relative to the
standard lattice.§ The center points of nodes from the quincunx lattice coincide with edge
midpoints while those of the axis-aligned quadtree coincide with square midpoints. Hebert
also provides an indexing scheme for the vertices that is equivalent to location codes for
quadtrees [Sam06].

Lindstrom and Pascucci [LP02] independently analyze the vertex relationships of
a nested RSB mesh in terms of two interleaved quadtrees. They introduce a hierarchical
indexing scheme for the diamonds that follows the traversal order of the hierarchy. Their
error metric includes an approximation error as well as a nested bounding sphere radius
for distance-dependent refinement (as first introduced by Blow [Blo00]). In the context of
out-of-core rendering, they demonstrate that hierarchical indexing performs an order of
magnitude better than array indexing which performs an order of magnitude better than
block-based indexing.

Cignoni et al.’s Batched Dynamic Adaptive Meshing (BDAM) [CGG+03a] follows
up on the clustering idea of RUSTiC [Pom00] by encoding a set of modifications to an
irregular triangle mesh. Thus, they use the containment hierarchy induced by bisections
as an efficient spatial access structure for conforming irregular triangle meshes describing
terrains. This enables efficient transmission of terrain data to the GPU in batches. A
corresponding texture hierarchy, encoded using a quadtree, enables color texture mapping

§A quincunx is a geometric arrangement of five dots () that commonly appears on dice and playing
cards.

30

which produces more realistic images using fewer triangles.
Gerstner [Ger03b] introduces an implicit optimally tight octagon-shaped bounding

hierarchy for distance-dependent rendering based on the limit shape of the domain covered
by a diamond’s hierarchical descendants [Tan95, BLV03] (see Figure 3.4). He also shows
how the various independent saturated error metrics can be combined at runtime, to achieve
dynamic refinements to the saturated selection criterion.

(a) Octagonal descendant domain (b) Nested descendant domains

Figure 3.4: (a) The limit shape of a diamond’s hierarchical descendants is an octagon with the
edge lengths of its triangles. (b) The descendant domains of its four children (with colored central
vertices) are nested within its octagonal descendant domain.

Hwa et al. [HDJ04, HDJ05] present a batched update approach based on diamonds
and provide closed-form equations for the offsets to vertices and neighbors of a diamond
as well as its parents and children. They improve on the spatial access structure of BDAM
by using the regular clustering of RUSTiC. Furthermore, their textures are encoded using
a diamond hierarchy, and are thus more closely aligned with the hierarchy defined by the
height values than the quadtree of BDAM [CGG+03a].

Gobbetti et al. [GMC+06] demonstrate that batch-updated diamond-based approaches
can be competitive with the non-conforming state of the art grid-based approaches [LH04]
in terms of compression rates and runtime performance. Lindstrom and Cohen [LC10]
propose a batch-updated variable-rate GPU compression scheme for RSB meshes in which
the batches are regularly refined. The recent work by Goswami et al. [GMBP10] utilizes
a batch-based hierarchy for parallel rendering of large datasets across multiple machines
and displays.

In [YWD11], we introduce parallel algorithms for extracting conforming triangle
meshes on the GPU from a two-dimensional hierarchy of diamonds in a parallel terrain
processing framework.

Compact encodings for incomplete hierarchies. All the above methods exploit the
regularity of the data distribution by encoding the multiresolution model as a regular

31

grid where all vertices are present. Consequently, many of the above techniques exploit
the regularity of the dataset to reduce the geometric and topological overhead of the
multiresolution model. Since all vertices in a (2N + 1)2 terrain are present, they can be
stored linearly and accessed using row-major ordering (or a more complicated indexing
scheme [LP02, Sam06]). Furthermore, the implicit dependency relation can be used to
locate parents, children and neighboring triangles, enabling pointerless representations.

However, in cases where values for portions of the domain are unavailable or the
field is oversampled, efficient representations of such incomplete hierarchies can signifi-
cantly reduce storage requirements and processing times. Although simplex and diamond
hierarchy approaches that represent the dependency relation explicitly, i.e. with point-
ers, can handle incomplete hierarchies, we focus here on the approaches that exploit the
regularity of the sampling to reduce the hierarchical overhead incurred for each retained
sample in the dataset.

To the best of our knowledge, the only method to encode an incomplete nested RSB
mesh has been proposed by Gerstner [Ger03a]. He introduces a compression method
based on a linearization of the domain using a Sierpinski space-filling curve associated
with the complete hierarchy of triangles. He uses a containment hierarchy as a multires-
olution representation, and encodes in each node of the resulting partial tree the number
of nodes that need to be skipped if the node is not to be refined. Variable-size relative
pointers are used to indicate the number of bytes to skip if a node is not refined, and an
average overhead of 3 bytes per vertex is reported. However, since each node is accessed
via pointers stored in its parents, this representation does not provide random access to the
data in the model. Gerstner [Ger03a] also introduces the notion of incorporating higher
resolution blocks of samples into a coarse dataset. Although few details are given regard-
ing how to accomplish this, he indicates that this requires the addition of some interpolated
samples to align the new data with the hierarchy.

Our work on supercubes (see Chapters 5 and 7 as well as [WD08c, WD09b]) im-
plicitly clusters data associated with the diamonds of an incomplete hierarchy. In contrast
to the approach of Gerstner [Ger03a], supercube-based representations provide random
access to the data associated with each diamond. Empirically, the supercube encoding has
an overhead of less than one byte per encoded sample, while the approach of Gerstner
exhibits an average overhead of three bytes per sample. Both approaches provide a means
of embedding higher resolution regions of data within the multiresolution terrain model
(see Section 7.5.4).

3.3.2.2 Three dimensional domains

In this subsection, we review approaches for nested RSB meshes in 3D, with a focus on
methods used to model multiresolution volume datasets and to enable efficient extraction
of isosurfaces.

Zhou et al. [ZCK97] extend the triangle fusion algorithm of Lindstrom et al. [LKR+96]
to create a conforming tetrahedral fusion operation over nested RSB tetrahedral meshes.
They compute the dependency relation of the vertices through a recursive application
of tetrahedral bisection to the initial six tetrahedra subdividing the cubic domain. The
dependencies are explicitly encoded in a dividing point table, where the dividing point is

32

equivalent to the split vertex of [LKR+96] and to the central vertex in our terminology,
and are used to extract simplified isosurfaces from the hierarchy.

One interesting feature of their approach is that it incorporates a method to ensure
that the topology of the simplified surface matches that of the surface at full resolution.
This is accomplished by disallowing fusion of tetrahedra whose bisection edge vertices lie
on the same side of the isosurface, but whose split vertex lies on the opposite side of the
isosurface.

Gerstner and Pajarola [GP00] note that the topology preserving approach of Zhou et
al. [ZCK97] is too conservative. Although their proposed solution is based on bintrees,
they consider changes to an isosurface’s topology at the diamond level. To do so, they
define isosurface cases within each diamond based on the relative values of a diamond’s
vertices and the given isovalue. Their saturated topology-based error metric encodes the
range of isovalues in which the topology of the extracted mesh changes.

However, topology preservation limits the adaptability of the approach since all
nodes in which the topology changes must be present in all extracted meshes. Conse-
quently, surfaces with complicated topology can never be simplified beyond a certain
point. To resolve this, they introduce a topology control mechanism which weights the
topology metric at each node. As an example, they demonstrate how this can clean up a
noisy isosurface by reducing the genus of the extracted mesh.

Gerstner and Rumpf [GR99] accelerate the extraction of isosurfaces using parallel
processors and a view-dependent saturated error metric. Using this approach, they can
extract isosurfaces up to 2.4 times faster with four processors than with one. Additionally,
they introduce a mechanism to cull the isosurface backfaces through the use of a view-
dependent curvature-based error criterion, reducing the size of the extracted isosurfaces
by a factor of two. They note that the gradient of a vertex is necessary for smooth shading,
but requires three times as much space to encode as the scalar values. Thus, rather than
encoding the gradient, they compute it on the fly and cache the values in a hash table.
In follow-up work [Ger02], Gerstner describes a hierarchical scheme to compute the
gradient of a tetrahedron from that of its parent. When used in conjunction with a sorting
scheme for tetrahedra based on the bisection’s splitting plane, this enables back-to-front
isosurface extraction, which they use to extract multiple transparent isosurfaces during a
single traversal of the hierarchy.

Gregorski et al. [GDL+02] generalize the ROAM algorithm [DWS+97] to tetrahedral
meshes using a diamond-based approach. They avoid the need to deal with boundaries
by treating the domain as a 3-torus of resolution (2N)3. In contrast to the explicit depen-
dency relation encoding of Zhou et al. [ZCK97], Gregorski et al. implicitly encode the
dependency relation of the entire hierarchy in terms of scaled offsets from 26 archetypal
diamonds, corresponding to the possible oriented directions of a diamond’s bisection edge.
Specifically, they identify eight diamonds whose bisection edge is aligned with a cube
diagonal (referred to as 0-diamonds), twelve diamonds with bisection edges aligned with
a face diagonal of a cube (referred to as 1-diamonds) and six diamonds with bisection
edges aligned with cube edges (referred to as 2-diamonds).

They encode the locations of the vertices of a diamond as well as the central vertices
of its parents and children as scaled offsets from its central vertex. Access to a diamond’s
entries in this dependency table requires only its central vertex, its level and its type (i.e.

33

orientation), saving 6–12 pointers (i.e. 24–48 bytes) per diamond compared to the encod-
ing of Zhou et al. [ZCK97]. Although they indicate how the vertices and the dependency
relation are recovered, they do not discuss how such offset tables are generated or how the
orientation of a diamond is determined.

Our encoding of diamonds (see Chapter 6 and [WD08b, WD09a, WD10b]) extends
this by providing an efficient means of determining a diamond’s class and level as well
as the orientation of its spine directly from the binary representation of its central vertex.
We, therefore, only require the coordinates of a diamond’s central vertex.

The diamond-based scheme of Gregorski et al. uses ROAM’s [DWS+97] dual-queue
selective refinement algorithm to exploit the frame-to-frame coherence between extracted
meshes during view-dependent isosurface extraction. This is accomplished by initializing
the extraction with the RSB mesh extracted at the previous frame. This scheme is also used
during small adjustments to the isovalue. They compress the scalar values, field gradient
and min-max ranges within each diamond from 19 bytes to 4 bytes. Additionally, they rear-
range the data hierarchically [LP02] and use the operating system’s virtual memory paging
for cache-coherent out-of-core memory management. Recently, Gregorski et al. [GSDJ09]
proposed a method to further accelerate view-dependent isosurface extraction through the
use of occlusion culling [LH98].

Linsen et al. [LGP+04] use diamond connectivity [Pas02] as an adaptive subdivi-
sion basis for volumetric datasets. They use trilinear B-spine wavelets to downsample
the dataset (i.e. rather than the more commonly used subsampling) to generate similar
approximations using approximately 10-15% fewer tetrahedra.

Marchesin et al. [MDM04] consider the orientation edge vectors of a tetrahedron’s
edges, and prove that the components of any edge vectors of a tetrahedron at level k in
a hierarchy of tetrahedra are either −2k, 0 or 2k. They exploit this to create an efficient
enumeration algorithm for the points within a tetrahedron that is similar to a raster scan
conversion algorithm. The algorithm first enumerates the axis aligned planar slices of a
tetrahedron. Within each triangular slice, it enumerates all axis aligned lines. Finally, it
enumerates the points within each line.

They use the nested hierarchy for view-dependent Direct Volume Rendering (DVR)
and examine the implications of applying non-conforming bisections, which can be used
to extract smaller meshes much faster than a conforming algorithm, but can introduce
significant noise into the visualization. In some cases, though, the resulting image was
determined to be of sufficient quality.

3.3.2.3 Higher dimensional domains

Approaches for higher dimensional domains have primarily focused on representations
for time-varying volumetric datasets. The temporal dimension of such datasets can be
treated as a set of values in the same 3D location [GSDJ04], or as a fourth spatial dimen-
sion [LPD+04, LDS04].

Lee et al. [LDS04,Lee06] extend their tetrahedral neighbor-finding algorithm to 4D
hierarchies of pentatopes. As in the 3D case, they use hardware bitshifting operations
to guarantee a worst-case constant time neighbor finding operation. One source of in-
efficiency in their approach is that they store an approximation error for each pentatope

34

(i.e. 4-simplex) rather than for each diamond. Results on small datasets of resolution 334

indicate that an unsaturated error metric can reduce the size of extracted RSB meshes by
1% compared to a saturated metric.

Gregorski et al. [GSDJ04], apply their diamond-based isosurface extraction frame-
work [GDL+02] to time-varying volumetric datasets modeled as a stack of volumetric
datasets covering the same volumetric domain. They exploit the temporal coherence of
the dataset by initializing the isosurface extraction for each new time-step with the RSB
mesh extracted during the previous time-step. Additionally, they propose a batched up-
date approach for the subtrees of tetrahedra within each diamond [Pom00] to reduce the
granularity of each modification and accelerate hardware rendering of isosurfaces.

Linsen et al. generalize their 3√2 approach [LGP+04] to 4D grids with the n√2
scheme [LPD+04]. This enables treating the temporal dimension in time-varying vol-
ume data as a fourth spatial dimension. An advantage of their approach is that their
wavelet-based downsampling approach approximates the data at lower resolutions rather
than subsampling the data. They then use volume rendering techniques to render the
extracted hypervolume.

Atalay and Mount [AM07] use a hierarchy of pentatopes as a point-location struc-
ture to accelerate ray tracing of atmospheric effects. In this scheme, each ray is represented
as a 4D point, and values for unrepresented points are interpolated based on the RSB de-
composition. Compared to a non-adaptive approach, the hierarchy of pentatopes achieved
a six times savings in time. Further optimizations were achieved by applying a lazy
neighbor-finding algorithm to patch cracks locally where necessary, resulting in a further
3 times savings in extraction time and 9.3 times in space.

3.3.3 Adaptive representations for extracted meshes
Algorithms have also be proposed to obtain variable resolution surfaces by post processing
a surface extracted from volume datasets. One approach is to first extract the mesh at full
resolution (e.g. using Marching Cubes [LC87]) and to then simplify the mesh in a post-
processing step [SZL92,GH97]. However, this requires processing time and storage for the
isosurface at full resolution. Other approaches [WDSB00, GCBB01] involve generating a
coarse topologically correct representation of the mesh from the volume dataset followed
by a refinement process that satisfies certain constraints such as surface error and triangle
aspect ratio. Such approaches can suffer (in speed or accuracy) from not taking the
volumetric representation into account, e.g. the resulting meshes are no longer guaranteed
not to self-intersect.

Another class of algorithms target adaptive grids to reduce the number of extracted
isosurface primitives. However, care must be taken to prevent cracks in the surface when
extracting from neighboring cells of different sizes. The key distinction of these repre-
sentations is that they do not store the field values but, instead, they represent the sign
field at each vertex of the hierarchical grid. Consequently, they only represent a single
(variable- or multi-resolution) mesh and do not support scalar field operations such as
distance computations and Boolean operations.

The two most common solutions to the cracking problem are to either effectively
increase the resolution of the larger cells by using the values of the higher resolution cells

35

or to decrease the resolution of the higher resolution cells by using the interpolated values
from the lower resolution cells rather than the actual field values. To reduce the number of
possible cases, balanced octrees [VHB87,Siv96] are typically (but not always [KKDH07])
employed.

Muller and Stark [MS93] introduce a top-down splitting box algorithm yielding
an adaptive isocontour. Edges of cells can contain more than two vertices, but can only
contain a single label transition. Since only the values along edges are checked, internal
features can be missed. Cracks are handled by removing higher resolution points (i.e.
internal to cubes), effectively simplifying shared boundaries of adjacent faces at different
resolutions to line segments.

In the approach of Shu et al. [SZK95], the domain is first subdivided into a coarse
grid. Each cell of this grid is then subdivided if a curvature constraint is not met. Cracks
introduced between adjacent cells of different resolutions are patched using polygons
whose boundaries are defined by the intersection of the interface between the cell domains
and both of the isosurface patches. This approach is optimized through lookup tables
on the possible configurations of the two isosurface patches (they reduce this to 22 pos-
sible cases). Since this approach does not check field values within its cells, it too can
miss features of the full resolution isosurface. The authors propose (but do not imple-
ment) an adaptation of BONO [WVG92] to catch these missing features. The meshes
extracted using this approach are approximately 55% smaller than those of the original
MC algorithm [LC87].

Shekhar et al. [SFYC96] patch cracks on interfaces between cells of different reso-
lution by forcing higher resolution features to align with their lower resolution neighbors,
effectively subsampling the data. This approach is similar to [MS93] in that higher res-
olution features are aligned with those of their lower resolution neighbors. Ohlberger
and Rumpf [OR97] present a similar solution using subsampling. Although subsampling
approaches achieve a continuous representation, they can change the topology of the
extracted surfaces from that of the fine resolution data.

In the work of Westermann et al. [WKE99] samples at higher resolution are averaged,
resulting in smoother extracted surfaces; however, this modifies the underlying dataset.
Their work is simplified by using balanced octrees, which greatly reduce the number of
cases that need to be considered. Finally, they force the boundaries of lower resolution
nodes to match those the higher resolution ones. Kazhdan et al. [KKDH07] generalizes
the above approach without requiring the octree to be balanced.

Mello et al. [MVT03] extract an approximate variable-resolution representation of
an isosurface from a 3D point cloud by first computing the sign field of the vertices of a
nested RSB mesh.

The Adaptive Dual Contouring method proposed in [JLSW02] represents the isosur-
face as an octree in which the leaves contain the isosurface, and the connectivity between
nodes is implicitly determined through the face neighbors in the octree. This method en-
ables a bottom-up simplification process, but does not guarantee that the extracted meshes
are conforming. Later approaches [GK03,SJW07] ensure that the extracted surface is man-
ifold, but do not guarantee that it is free of self-intersections. Conversely, the approach of
Ju and Udeshi [JU06] ensures that the surface does not intersect, but does not guarantee
that it is manifold. Zhang et al. [ZBS03] extend the adaptive dual contouring method for

36

variable-resolution interval volumes.
Most of these approaches support a (bottom-up) simplification process, rather than

the more general (top-down) selective refinement query, i.e., it is not possible to extract
variable-resolution meshes of minimal size satisfying an error criterion. Alternatively, a
multiresolution representation of the extracted mesh enables the generation of variable-
resolution meshes satisfying an application-dependent error criterion at runtime.

3.3.4 Multiresolution representations for extracted meshes
Pascucci and Bajaj [PB00] introduce an interruptible progressive isosurfacing algorithm
over RSB hierarchies in 2D and 3D. They introduce a small set of primitives which
they use to define all possible updates to the isocontour as vertices are introduced at the
midpoint of a simplex’s bisection edge. They define a one-to-one correspondence between
isosurface modifications and the conforming modifications that generate them.

However, since the modifications are defined in terms of basic mesh operations, it be-
comes more difficult to define the different intersection cases and to guarantee correctness
as the dimension and complexity of the cases increases (e.g. for conforming modifications
to interval volume meshes). Also, they do not discuss a data structure for the extracted
meshes or how this structure might be queried.

The advantage of such a scheme over offline mesh decimation (such as [GH97])
is that the generated surfaces are guaranteed not to self intersect due to the embedding
volumetric grid and can be computed interactively. However, the vertices of these surfaces
are more constrained than those created by general mesh decimation algorithms. They
prove that for a hierarchy with n nodes, the extraction of an isosurface of size k requires
O(k log n) size and time.

Borgo et al. [BPSC04] extract isosurfaces from nested tetrahedral RSB meshes one
depth at a time using a breadth-first traversal, requiring two depths of the DAG to be in
memory at once. They use an explicit mapping to pass isosurface vertices from parent
tetrahedra to child tetrahedra to reduce redundant computation of isosurface vertices and
report a three times savings in extraction time on datasets of sizes 643 and 1283

Lewiner et al. [LVLM04a,LVLM04b,LLVM06] introduce a progressive hierarchical
representation for isosurfaces extracted from LEB grids in terms of the tubular neighbor-
hood of an isosurface, which includes all cells intersected by the isosurface. Their model
defines a total order for the modifications, rather than a partial order, limiting the number
of encoded meshes.

Our isodiamond hierarchy framework (see Chapter 9 and [WD08b, WD10b]) im-
proves on previous approaches by abstracting the mesh extraction method to treat mul-
tiresolution isosurfaces and interval volumes in the same framework. It supports efficient
selective refinement queries to extract conforming meshes satisfying an application depen-
dent selection criterion and requires significantly less memory than the multiresolution
scalar field model. We also introduce minimal isodiamond hierarchies as a means of re-
ducing the storage and computational costs associated with extracting variable resolution
isosurfaces and interval volumes.

37

3.4 Discussion

In this chapter, we have classified and analyzed approaches for representing nested meshes,
with a focus on RSB approaches and on how they have been applied to model multireso-
lution scalar fields.

We now present a taxonomy of these approaches in Tables 3.1 and 3.2. We first
distinguish between simplex-based approaches, which we list in Table 3.1 and diamond-
based approaches, which we list in Table 3.2. For the purposes of this taxonomy, we
classify methods that utilize the dependency relation among the vertices of a nested RSB
meshes as diamond-based approaches.

Within each table, we first classify methods based on the underlying dimension of
the scalar field’s domain and then by the queries that these models support. Such queries
can be run from a coarse base domain in a top-down manner, from the full resolution
mesh in a bottom-up manner or incrementally from a previously extracted mesh. We also
distinguish between the class of selection criteria supported by the approach: those based
on approximation error, isosurface error and view-dependent criteria which depend on an
object’s distance to the viewpoint.

For simplex-based approaches the precomputed errors can be associated with the
simplices or with the split vertices. The former can require significantly more storage, but
can return smaller meshes as a result of a query. Similarly, a saturated error metric enables
simpler queries but can also increase the size of its resultant meshes. The precomputed
approximation error can be based on the approximation error between its current value
and that of its subdivided children at the next depth, which we refer to as a local error
metric. Alternatively, it can be based on the maximum interpolation error over all samples
within its domain, which we refer to as a total error metric [LRC+02].

Our final classification relates to the optimizations introduced or implemented by
the various approaches to enable interactive queries on large datasets. This includes
compressed meshes in the form of triangle or tetrahedral strips, view frustum culling and
cache-coherent access to subsets of the dataset. Since the underlying data structure in all
approaches are simplex-based or diamond-based nested RSB meshes, the optimizations
developed for one scheme can usually be applied to the other schemes, but are useful for
our taxonomy in distinguishing among the various methods.

38

Table 3.1: Taxonomy of simplex-based approaches

Query Error Optimizations

A
pp

ro
ac

h

D
im

en
si

on

E
xt

ra
ct

io
n

A
pp

ro
xi

m
at

io
n

E
rr

or
D

is
ta

nc
e

to
V

ie
w

po
in

t
Is

os
ur

fa
ce

A
ss

oc
ia

te
d

w
ith

Sa
tu

ra
te

d

H
ie

ra
rc

hi
ca

l

Fr
us

tu
m

C
ul

lin
g

Fr
am

e-
fr

am
e

co
he

re
nc

e
Si

m
pl

ex
St

ri
pp

in
g

O
ut

-o
f-

co
re

C
lu

st
er

ed
up

da
te

s

In
co

m
pl

et
e

Fi
el

d

Pa
ra

lle
l

Evans et al. [EKT01] 2D Top-down X X Simplex Global

Lee et al. [LDS01] 3D Incremental X Simplex Global X

Lee et al. [LDS04] 4D Top-Down X Simplex Global

ROAM [DWS+97] 2D Incremental X X Vertex X Local X X X [Pom00, Lev02]

Marchesin et al. [MDM04] 3D Incremental X X Vertex X Local X X

Gerstner [Ger03a] 2D Top-down X Vertex X Local X X

Gerstner [Ger03b] 2D Top-down X X Vertex X Global X

Gerstner et al. [GP00, GR99, Ger02] 3D Top-down X X Vertex X Local [GR99]

Pascucci [Pas04] 3D Top-down X X Vertex X Local X X X

BDAM [CGG+03a] 2D Top-down X X Vertex X Local X X X [CGG+03b]

Tetrapuzzles [CGG+04] 3D Top-down X X Vertex X Local X X X X X X

Lewiner et al. [LVLM04b] 3D Top-down X Vertex Local

Balmelli et al. [BLV03] 2D Bottom-up X Vertex Global

Table 3.2: Taxonomy of diamond-based approaches

Queries Error Optimizations

A
pp

ro
ac

h

D
im

en
si

on

E
xt

ra
ct

io
n

A
pp

ro
xi

m
at

io
n

E
rr

or
D

is
ta

nc
e

to
V

ie
w

po
in

t
Is

os
ur

fa
ce

Sa
tu

ra
te

d

H
ie

ra
rc

hi
ca

l

Fr
us

tu
m

C
ul

lin
g

Fr
am

e-
fr

am
e

co
he

re
nc

e
Si

m
pl

ex
St

ri
pp

in
g

O
ut

-o
f-

co
re

H
ie

ra
rc

hi
ca

lL
ay

ou
t

C
lu

st
er

ed
up

da
te

s
In

co
m

pl
et

e
Fi

el
d

Lindstrom et al. [LKR+96] 2D Bottom-Up X Local X X X

Pajarola [Paj98] 2D Top-Down and Bottom-Up X X Global X X

SOAR [LP02] 2D Top-Down X X X Local X X X X

Hwa et al. [HDJ05] 2D Incremental X X Local X X X X X X

Yalçın et al. [YWD11] 2D Bottom-up X X Global X

Zhou et al. [ZCK97] 3D Bottom-up X X Local

Gregorski et al. [GDL+02] 3D Incremental X X Global X X X X

Gregorski et al. [GSDJ04] 3D + Time Incremental X X Global X X X X X

Linsen [LGP+04, LPD+04] 3D,4D Top-Down X Global X

Borgo [BPSC04] 3D Top-Down X X X Local

Weiss [WD08b, WD10b] 3D Top-Down X Global

Weiss et al. [WD08c, WD09b] 2D,3D Top-Down X Global X X

39

Chapter 4

Diamond hierarchies of arbitrary dimension

In this chapter, we provide a theoretical foundation for diamonds of arbitrary dimensions
through a constructive decomposition of diamonds in terms of two simplicially decom-
posed hypercubes. This enables us to characterize the distinct classes of diamonds, and
to derive closed-form equations for the number of simplices, vertices, parents and chil-
dren of each diamond class. In particular, we prove that d-dimensional diamonds have
O(d!) simplices, and thus, when using a simplex-based approach, conforming refinements
require factorial time and space. In contrast, since these simplices are generated during
the refinement of a diamond’s O(d) parents , conforming refinements on a diamond-based
approach require only linear time and space.

This chapter is organized as follows. We first introduce the cross simplex and cross
complex in Section 4.1 as a means of generating higher dimensional simplices and sim-
plicial complexes from simplices in lower dimensional affinely independent spaces. We
then discuss a family of simplicial decompositions of a hypercube in Section 4.2 related
through the Regular Simplex Bisection (RSB) operator. This operation has been used in the
literature to define a hierarchy of simplices, which we review in Section 4.3. We then intro-
duce diamonds and their hierarchical dependency relations in Sections 4.4 and properties
of diamonds in Section 4.5. We discuss querying algorithms on a hierarchy of diamonds
in Section 4.6 and conclude in Section 4.7 with a discussion on some implications of our
decomposition.

4.1 Cross simplex and cross complex

We utilize the simplicial join operation [RS72, Lic99] to generate higher-dimensional
simplices from a pair of affinely independent simplices and refer to the result as a cross
simplex. Given an a-simplex σa and a b-simplex σb in affinely independent subspaces, the
cross simplex is the d-simplex σ = σa ⊗ σb, defined by the vertices of σa and σb, where
d = a + b + 1.

For example, if σa is a triangle (2-simplex) defined by 3 vertices and σb is a vertex
(0-simplex) that is not coplanar with the vertices of σa, then the cross simplex σ = σa⊗σb

is the tetrahedron (3-simplex) defined by the vertices of σa and σb (see Figure 4.1a).
Given a simplicial i-complex Σi and a simplicial j-complex Σ j whose cells are

pairwise affinely independent, we define the cross complex Σd = Σi ⊗ Σ j as the simplicial
d-complex whose d-simplices are cross simplices of cells from Σi and Σ j, i.e., ∀ cells
σ ∈ Σd, σ = σi ⊗ σ j, where σi is a cell of Σi and σ j is a cell of Σ j (see Figure 4.1b). We
note that this operation is defined when all pairs of simplices from the two complexes
are affinely independent, but the two complexes themselves do not need to be affinely
independent.

41

(a) Cross simplex

(b) Cross complex

Figure 4.1: (a) The cross simplex of a triangle (blue) and a vertex (red) is a tetrahedron. (b) The
cross complex defined by an eight edge complex (blue) and a one edge complex (red) is composed
of eight tetrahedra.

(a) 1-cube (b) 2-cube (c) 3-cube

Figure 4.2: Kuhn-subdivided hypercubes in (a) 1D (b) 2D (c) 3D. One of the d! simplices is
highlighted in blue. All edges are aligned with the diagonal of an axis-aligned hypercube.

4.2 Simplicial decomposition of hypercubes

We are often interested in generating simplicial complexes that cover a hypercubic domain.
To this aim, we first consider the canonical subdivision of a hypercube into d! simplices
along a diagonal. This decomposition was initially proposed by Freudenthal [Fre42]
and was popularized by Kuhn [Kuh60] in the context of fixed point calculations. We
next consider a family of nested decompositions, which we call the Maubach complexes,
generated by successively applying regular simplex bisection to the top simplices of a
Kuhn-subdivided hypercube.

4.2.1 Kuhn subdivisions
The Kuhn-subdivision of a d-dimensional cube h, which we denote as K(h), is a simpli-
cial complex [AG79] defined by the d! top simplices, sharing a common diagonal of h.

42

Figure 4.3: Decomposition of a 3-cube into 3! = 6 simplices.

Figure 4.2 illustrates Kuhn-subdivided d-cubes for d ∈ {1, 2, 3}, and highlights one of the
d! simplices.

Assume, without loss of generality, that a unit d-cube h is embedded in a subspace
[0, 1]d of Rn. Let 0d and 1d denote a pair of opposite vertices forming a diagonal ψ =

(0d, 1d). Also, let e0 denote 0d and ei the ith unit vector in Rd, e.g. e1 = (1, 0, 0, . . .),
e2 = (0, 1, 0, 0, . . .).

We refer to the d-simplex with vertices

vi =
∑
0≤ j≤i

e j

as the base simplex, which we denote as S 0. For example, when d = 3, S 0 has vertices
(0, 0, 0), (1, 0, 0), (1, 1, 0) and (1, 1, 1). The base simplex for d ∈ {1, 2, 3} is highlighted in
blue in Figure 4.2.

Let π be a permutation of the integers {0, 1, . . . , d − 1} and let v′ = πv indicate the
application of permutation π to the coordinates of vertex v. For example, if v = (1, 1

2 , 0)
and π = {2, 0, 1}, then v′ = πv = (0, 1, 1

2). Finally, let πσ denote the application of
permutation π to each vertex of simplex σ.

Then, the Kuhn-subdivision of hypercube h, which we denote as K(h), is defined
by the d! simplices of order d obtained by mapping each distinct d-permutation π onto the
vertices of the base simplex S 0. Formally,

K(h) = { π S 0 | π is a permutation of {0, 1, . . . , d−1}}. (4.1)

Figure 4.3 illustrates the 3! = 6 tetrahedra of a Kuhn-subdivided 3-cube.
Since coordinate permutations do not modify 0d or 1d, every d-simplex in K(h)

contains diagonal ψ of h. Also, the ith vertex vi of any cell σ ∈ K(h) contains (d − i + 1)
coordinates of value 0 and i coordinates of value 1. Thus, the edge (0d, vi) of σ is a
diagonal of an i-face of h, and edge (vi, 1d) is a diagonal of a (d − i)-face of h. Kuhn
subdivisions can be generalized to any d-cube h′ with diagonal ψ′ = (v1, v2) by an affine
mapping from the vertices of ψ′ to (0d, 1d).

An interesting property of Kuhn subdivisions, which will be of use later and which
we prove now, is that it provides a Kuhn-subdivision to all faces of the initial hypercube.

Theorem 4.2.1. Let K(h) be the simplicial decomposition of a d-cube h, and hi an i-face
of h. Then K(hi) = hi ∩ K(h) is an i-dimensional Kuhn subdivision of the domain of hi.

43

Proof. If i = 0 then K(hi) is trivially a Kuhn subdivision. Assume, without loss of
generality, that h is a unit d-cube with diagonal ψ = (0d, 1d). We show that the (d − 1)-
faces of h are Kuhn-subdivided. Since d was arbitrary, the proof for the remaining i-faces
follows by induction.

Consider the simplicial (d − 1)-complex Σ obtained by removing vertex 1d from
every simplex σ ∈ K(h). All cells of Σ are defined by d vertices and are thus (d − 1)-
simplices. In fact, since ψ was the only diagonal of h, and all vertices of K(h) lie on its
boundary, we can decompose Σ into d subcomplexes, each containing simplices within a
(d− 1)-dimensional axis aligned hyperplane of Rd. In the nth such subcomplex Σn ⊂ Σ this
hyperplane can be defined by the equation xn = 0. Thus, the d vertices of a cell σ ∈ Σn are
of the form

v′k = π(
n−1∑
j=0

e j +

i∑
j=n+1

e j). (4.2)

By projecting Σn onto the (d − 1)-dimensional subspace of Rd that excludes coordinate xn,
we obtain the (d − 1)! cells of a Kuhn subdivided (d − 1)-cube (compare Equation 4.2 to
Equation 4.1).

Similarly, the simplicial complex defined by removing vertex 0d gives us Kuhn
subdivisions for the d remaining (d − 1)-faces of h, where each hyperplane is of the form
xn = 1. �

4.2.2 Maubach’s typographical bisection scheme
Recall from Section 2.2.2 that a d-simplex σ is bisected along one of its edges e, by
inserting a new vertex vm at the midpoint of e and bisecting σ along the hyperplane
defined by vm and the (d − 1) vertices of σ that are not incident to e (see Figure 2.6 for
examples in 2D and 3D). This creates two new d-simplices, covering the same domain as
σ, each containing vertex vm and one (but not both) of the endpoints of e.

Maubach’s bisection scheme [Mau95] specifies the bisection edge for any top sim-
plex σ in an initial simplicial d-complex Σ or generated by repeated application of a
typographical bisection rule to the cells of Σ. It depends only on the ordering of the ver-
tices of σ, and on the subdivision depth `σ of σ, which is initialized to zero for any cell in
the original complex Σ. Given a d-simplex

σ =(v0, v1, . . . , vk−1, vk, vk+1, . . . , vd),

where k = d − (`σ mod d), the bisection edge is defined by vertices v0 and vk, and its
midpoint is vm = (v0 + vk)/2. The two d-simplices generated by the bisection rule have
vertices

σ0 = (v0, v1, . . . , vk−1, vm, vk+1, . . . , vd)
σk = (v1, v2, . . . , vk, vm, vk+1, . . . , vd),

and the depth of these simplices is incremented, e.g.

`σ0 = `σk = (`σ + 1).

44

1-triangle0-triangle

(a) 2D RSB classes

2-tetrahedron1-tetrahedron0-tetrahedron

(b) 3D RSB classes

Figure 4.4: The d-dimensional RSB scheme has d similarity classes of top simplices. In 2D, there
are two classes of triangles (a) while in 3D, there are three classes of tetrahedra (b). The bisection
edge (green) of a class i simplex is aligned with the diagonal of an axis aligned (d − i)-cube.

Maubach proves that when his bisection scheme is applied to a Kuhn-subdivided
d-cube h whose simplex vertices are ordered as in Section 4.2.1, the generated d-simplices
belong to at most d similarity classes [Mau95]. Recall that simplices are similar if there is
an affine mapping consisting of only uniform scaling, reflection, rotation and translation
between them. Since coordinate permutations are rigid mappings, the d! cells in K(h)
belong to the same similarity class. Furthermore, all cells at depth (` mod d) belong to
the same similarity class.

We note that, although the term Longest Edge Bisection (LEB) [Riv84, Riv91] has
been applied to this family of decompositions, it is no longer applicable when the dimen-
sion d is greater than three. To see this, consider the d-dimensional unit cube h with edge
length 1 and diagonal length

√
d, where d > 3. All simplices inK(h) contain the diagonal

of the cube as well as at least one edge of h (see Figure 4.2). After bisecting a simplex σ
of K(h), the resultant simplices contain an edge e′ of length

√
d/2 as well as some edges

of the original cube h. Neither edge e′ nor edges of h are bisected in the (d − 2) bisections
that follow. In the dth bisection step, the bisection edge is an edge of h (of length 1), but
e′ has length greater than or equal to 1 since

√
d/2 = 1 when d = 4 and is greater than 1

when d > 4.
We therefore use the term Regular Simplex Bisection (RSB) to describe the sim-

plex bisection operation applied to a Kuhn-subdivided hypercubic domain according to
Maubach’s scheme. We refer to any simplex generated by successive RSB operations as
an RSB simplex, and to nested meshes consisting of RSB simplices as RSB meshes.

We denote the cells of K(h) as class-0 simplices, and to an RSB simplex σ of order
d as a class-i simplex if i = (`σ mod d). Observe that the bisection edge ψ = (v0, vd−i) of
a class-i simplex is aligned with the diagonal of a (d − i)-cube. Figure 4.4 illustrates the
two classes of RSB triangles and the three classes of RSB tetrahedra generated using the
RSB scheme.

Consider the family of simplicial d-complexes Mi(h), which we refer to as the
Maubach complexes, generated through successive bisections to the cells of K(h), where
i denotes the depth of the d-simplices inMi(h) andM0(h) contains the d! cells of K(h).
Since each d-simplex inM0(h) is replaced by two d-simplices inM1(h),M1(h) contains

45

2 · d! cells, and in general,Mi(h) contains 2i · d! cells. Figures 4.5 and 4.6 illustrates the
first few Maubach complexes for d = 2 and d = 3, respectively.

(a)M0(h) = K(h) (b)M1(h) (c)M2(h) = F (h)

Figure 4.5: Three consecutive Maubach complexesMi(h) in 2D. (a)M0(h) is equivalent to K(h)
and has 2! = 2 triangles. (b)M1(h) has 2 · 2! = 4 triangles. (c)M2(h) is equivalent to F (h) and
has 22 · 2! = (2 · 2)!! = 8 triangles.

(a)M0(h) = K(h) (b)M1(h) (c)M2(h) (d)M3(h) = F (h)

Figure 4.6: Four consecutive Maubach complexesMi(h) in 3D. (a)M0(h) is equivalent to K(h)
and has 3! = 6 tetrahedra. (b) M1(h) has 2 · 3! = 12 tetrahedra. (c) M2(h) has 22 · 3! = 24
tetrahedra. (c)M3(h) is equivalent to F (h) and has 23 · 3! = (2 · 3)!! = 48 tetrahedra.

4.2.3 Fully subdivided hypercubes
Let us analyze the properties of the dth Maubach complex,Md(h), which we refer to as a
fully subdivided hypercube, and denote as F (h). F (h) is a simplicial d-complex defined
by the 2d · d! cells resulting from d bisections of the cells in K(h). Each such cell belongs
to class-0 and is a factor of two smaller than those of K(h) [Moo92].

We simplify the notation by observing that 2d · d! can be defined in terms of the
double factorial function [Mes48] as

2d · d! = (2d)!!

where the double factorial n!! is equal to 1 if n ∈ {0, 1} and n · (n − 2)!! otherwise. The
values of (2d)!! for d ∈ [1, 2, 3, 4] are [2, 8, 48, 384].∗

∗We provide a more thorough treatment of the double factorial function and its properties in Appendix A.

46

Let h be a d-cube with midpoint vc, K(h) the Kuhn subdivision of h along diagonal
ψ, and F (h) its corresponding fully subdivided hypercube. We first show that each cell of
F (h) has a bisection edge defined by a vertex of h and the midpoint vc of h.

Lemma 4.2.1. For all cells σ ∈ F (h), vc is a vertex of σ. Furthermore, the bisection edge
of σ is defined by vc and one of the 2d vertices of h.

Proof. This follows from the generation of F (h) in terms of the Maubach complexes
Mi(h) starting withM0(h) = K(h). After the first application of the bisection rule to the
cells ofM0(h), all cells σ ofM1(h) have the midpoint vc of ψ as their dth vertex. Since
none of the next (d−1) bisections modify the dth vertex, all cells ofMd(h) = F (h) contain
vc.

Since all cells in F (h) are class-0, the bisection edge is determined by the first and
last vertices of σ. As described above, the last vertex of σ is vc. Since σ is a class-0
simplex, its bisection edge must be the diagonal of a d-cube. The only edges of F (h) that
satisfy this constraint are those between vc and a vertex of h. �

Recall that for a d-cube h, K(h) contains d! class-0 simplices. An alternate interpre-
tation of F (h) is as a collection of Kuhn-subdivided subcubes covering the domain of h
and centered at the midpoint of h.

Corollary 4.2.2. F (h) consists of 2d Kuhn-subdivided d-cubes covering h and with side
length half that of h. Thus, each of the 2d subcubes contributes d! cells to F (h) for a total
of 2dd! = (2d)!! cells.

Similarly to the Kuhn subdivision, all i-faces of a fully subdivided d-cube are fully
subdivided i-cubes.

Theorem 4.2.3. Each i-face hi of a fully subdivided d-cube F (h) is a fully subdivided
i-cube F (hi).

Proof. Consider the simplicial (d − 1)-complex Σ obtained by removing the vertex vc at
the midpoint of F (h) from each cell σ ∈ F (h). Since each j-face h j of a Kuhn-subdivided
cube is a Kuhn-subdivided j-cube, the removal of vc from a Kuhn-subdivided subcube
within F (h) adds the (d−1)! cells of a Kuhn-subdivided (d−1)-cube to each of the d facets
of h on which it is incident (see the proof of Theorem 4.2.1 for details). Since there are
2d−1 subcubes incident with each facet hi of h, hi contains 2d−1(d − 1)! = (2(d − 1))!! cells.
Since these (d−1)-simplices are from a Kuhn-subdivided (d−1)-simplicial complex, they
are all class-0 cells of dimension d − 1. Further, all cells of F (hi) contain the midpoint of
hi coinciding with the midpoint of the 2d−1 subcubes adjacent to hi. �

This enables us to compute the number of vertices in F (h).

Corollary 4.2.4. Since F (h) contains the midpoint of all i-faces of h, F (h) contains∑(
d
i

)
2d−i = 3d vertices†. Each vertex coincides with a face of h.

Using the above properties, we can define a fully subdivided d-cube as a cross-
complex of its boundary faces and vc.

†This summation is a special case of the binomial theorem, see Appendix C.

47

Corollary 4.2.5. Let hi denote one of the 2 · d facets of h. A fully subdivided d-cube F (h)
with midpoint vc can be decomposed as the cross-complex of the (d − 1)-simplices from
each fully subdivided facet F (hi) with the singleton simplicial complex {vc}. E.g.

F (h) = {
⋃
F (hi) ⊗ {vc} | hi is a facet of h}.

Corollary 4.2.5 motivates the double factorial notation. Each of the 2 · d facets hi

of h contributes the (2(d − 1))!! cells generated by F (hi) ⊗ vc, so F (h) is composed of
2d · (2(d − 1))!! = (2d)!! cells.

We are also interested in the simplicial complex defined by the simplices on the 2 · d
facets hi on the boundary of F (h), which we call a fully-subdivided d-cube boundary and
denote as BF(h). Thus,

BF(h) = {
⋃
F (hi) | hi is a facet of h}.

is the simplicial (d − 1)-complex defined by (2d)!! cells of dimension (d − 1). Each such
cell corresponds to a cell of F (h) where the vertex at the center of F (h) has been removed.
Figure 4.7 shows examples of fully subdivided i-cube boundaries for i = 1, 2, 3, and
highlights (in red) the midpoint of each facet of BF(h).

4-cube (a) 1-cube4-cube (b) 2-cube4-cube (c) 3-cube

Figure 4.7: Fully subdivided i-cube boundary BF for (a) 1-cube (b) 2-cube and (c) 3-cube, con-
taining 2 vertices, 8 edges and 48 triangles, respectively.

4.3 A hierarchy of RSB simplices

Consider a d-dimensional hypercubic domain h initially decomposed into d! cells asK(h).
A hierarchical containment relationship exists between cells in consecutive Maubach
complexes. The two d-simplices σ1 and σ2 generated through a bisection operation on
simplex σ are the children of σ, and conversely, σ is the parent of σ1 and σ2.

This nested relationship can be captured as a simplex tree, a binary tree whose
root is a d-simplex from K(h). Furthermore, the entire nested simplicial complex can be
represented as a forest of d! simplex trees whose roots are the class-0 cells of K(h). We
call this forest of simplex trees a hierarchy of RSB simplices, which we will also refer to as
a hierarchy of simplices [AM07] in general, and as a hierarchy of (right) triangles [EKT01,

48

(a) Hierarchy of RSB triangles (b) Simplex containment relation

Figure 4.8: A hierarchy of RSB triangles. (a) The triangles at four depths (two levels) of the
hierarchy. (b) The simplex containment relation defines a forest of binary trees.

DWS+97,Ger03a] a hierarchy of tetrahedra [Heb94,ZCK97,GR99,LDS01] or a hierarchy
of pentatopes [LDS04] in 2D, 3D and 4D, respectively.

The depth of a simplex is defined recursively as 0 for the bintree roots, and one
greater than the depth of its parent otherwise. All root simplices belong to K(h), so they
are all class-0 simplices. Since RSB is used to generate the simplices at successive depths,
all simplices at the same bintree depth belong to the same class of simplices. Furthermore,
since there are d classes of simplices in a hierarchy of simplices, and the classes repeat
cyclically, the class of a simplex σ at depth m is (m mod d). The simplices at d successive
depths define a level of the hierarchy. The level of a simplex at depth m is then bm/dc.

The bisection edge of σ is the diagonal ψ of a (d− i)-cube, and the vertex introduced
during the bisection of σ coincides with the midpoint of ψ.

Figure 4.8 illustrates the hierarchical relationship between the triangles in a hierar-
chy of triangles at four successive depths (two levels). Note that the hierarchy of triangles
contains two binary trees, and that each triangle has two children that cover its domain,
thus forming a nested decomposition of the square domain.

The fundamental operation performed on a hierarchy of simplices is the extraction
of adaptive simplicial complexes via a selective refinement query (see Section 2.4.1). Let
σ be a cell of a simplex tree T and σ1 and σ2 its children. Since σ1 and σ2 cover the same
domain as σ, the hierarchical relationship between cells of T defines a nested simplicial
mesh. Thus, since K(h) is a simplicial decomposition of the domain, repeated application
of the simplex bisection operation to cells in the forest always provides a non-overlapping

49

simplicial decomposition of the domain.
However, due to the local nature of an individual RSB operation, it does not, in

general, generate valid simplicial complexes. Consider the faces of a cell σ in a simplicial
complex Σ generated according to the regular simplex bisection rule. Since Σ is a simplicial
complex, all faces adjacent to those of σ intersect only at common faces. However, after σ
is bisected along edge ψ, faces that were previously incident to ψ are no longer conforming
(see Figure 2.1b).

Thus, the bisection rule requires additional constraints to ensure the generation
of valid simplicial complexes. Namely, (a) the depth of all cells incident to bisection
edge ψ of a cell σ must be equal to that of σ before the bisection; and (b) all such
cells must be bisected concurrently with σ. To satisfy this constraint, we must first find
the set of neighbors of cell σ along bisection edge ψ. The so-called neighbor-finding
operation, finds all d-simplices adjacent to σ along its bisection edge. Neighbor finding
can be accomplished by storing pointers to each of the d + 1 neighboring cells [Mau95]
or symbolically by manipulating location codes that uniquely identify each cell in the
forest [Heb94,Mau96,EKT01,LDS01,LDS04,AM07]. Symbolic neighbor-finding enables
a pointerless representation for cells in the forest, thus enabling each neighbor-finding
operation to be carried out in O(1) time. However, since each neighbor must be found,
this operation must be performed O

(∣∣∣Neighbors(σ)
∣∣∣) times.

4.4 A hierarchy of diamonds

We have seen that conforming updates to a simplicial complex generated using the RSB
scheme are related to the set of RSB simplices surrounding a common bisection edge.
An alternative model can be defined by clustering all d-simplices sharing a common
bisection edge into a new primitive, called a diamond [DWS+97, GP00, GDL+02, Pas02]
and considering the hierarchical relationships between diamonds rather than those between
RSB simplices.

An RSB diamond is the set of all d-simplices in a d-dimensional hierarchy of RSB
simplices with a common bisection edge, called the spine of the diamond. Since all
d-simplices within a diamond are congruent, there are d similarity classes of diamonds
in correspondence to the d similarity classes of RSB simplices. We refer to a diamond
whose d-simplices belong to class-i as an i-diamond and note that its spine is aligned
with the diagonal of an axis-aligned (d − i)-cube. Figure 4.9 illustrates the two classes of
two-dimensional diamonds and the three classes of three-dimensional diamonds.

4.4.1 Diamond subdivision
A diamond δ is subdivided by bisecting all of its d-simplices using the RSB scheme.
Thus, subdivision doubles the number of cells within δ and we denote its corresponding
subdivided diamond as δs (see Figure 4.10 for examples in 2D and 3D).

Diamond subdivision is an instance of stellar subdivision [Ale30,New31,Lic99] and
is a conforming refinement in arbitrary dimensions. An important property of diamond
subdivision is that all changes occur within the interior of the subdividing diamond δ.
Consequently, the faces on the boundary of δ are unaffected by its subdivision. The local

50

vc
vc

1-diamond0-diamond

(a) 2D Diamond Classes

vc

2-diamond2-diamond2-diamond2-diamond2-diamond2-diamond2-diamond

vcvvc

1-diamond

vc

0-diamond0-diamond

vc

(b) 3D Diamond Classes

Figure 4.9: The two classes of diamonds in 2D (a) and the three classes of diamonds in 3D (b).
The spine of an i-diamond (green edge) is aligned with the diagonal of a (d − i)-cube.

(a) 2D (b) 3D

Figure 4.10: Diamond subdivision in 2D (a) and 3D (b).

effect of the subdivision of a diamond δ is to (a) remove its spine (b) add a vertex vc at the
midpoint of its spine, which we refer to as its central vertex and (c) add edges from vc to
each vertex v of δ, which we refer to as its subdivision edges. A diamond can be uniquely
identified by its spine, or alternatively, by its central vertex, the midpoint of the spine.

4.4.2 Diamond dependency relation
The hierarchical relationship among RSB simplices defines a direct dependency relation
on the diamonds. In contrast with the containment relationship among the simplices
within the hierarchy, which can be represented as a forest of binary trees, the diamond
dependency relationship defines a partial order on the diamonds, which can be described
using a Directed Acyclic Graph (DAG).

A hierarchy of diamonds is a multiresolution model (see Section 2.4), which we
denote as ∆. When defined over a cubic domain Ω,

• the base mesh of ∆ is defined by the 0-diamond decomposing Ω and contains all
simplices of K(Ω);

• a modification in ∆ is a pair defined by an (unsubdivided) diamond δ and by the sub-
divided diamond δs associated with it, and is denoted as u = (δ, δs) (see Figure 4.11);
and

51

• the dependency relation is defined as in Section 2.4 and thus ∆ is described by a
dependency graph which is a DAG.

Let up = (δp, δps) be a modification that directly precedes uc = (δc, δcs) in the dependency
graph of ∆. Then, there is at least one d-simplex in the subdivided diamond δps that is also
in the unsubdivided diamond δc. We call δp a parent diamond of δc and, conversely, δc a
child diamond of δp in the hierarchy. Figure 4.11 shows the direct dependency relation
between two modifications up = (δp, δps) and uc = (δc, δcs) in 2D. up is a parent of uc since
δps and δc have a triangle in common (light blue).

sδpδp
(a) Parent up = (δp, δps)

sδcδc
(b) Child uc = (δc, δcs)

Figure 4.11: Modification up is a parent of modification uc in ∆ since subdivided diamond δps and
unsubdivided diamond δc have a triangle in common (light blue).

For a diamond δ, we denote the set of its children diamonds as Children(δ), and the
set of its parent diamonds as Parents(δ). Although each parent diamond δp ∈ Parents(δ)
may only partially cover the domain of δ, the set, Parents(δ), collectively covers δ’s domain
(and similarly for Children(δ)). Figure 4.12 illustrates the diamonds in a 2D hierarchy of
diamonds at four successive depths (two levels). Each diamond is identified with its spine
(a colored edges) and with its central vertex (filled circles at the midpoint of its spine).

4.4.3 Parent-child duets
By definition, a subdivided parent diamond δps and its (unsubdivided) child δc always have
at least one cell in common. We refer to the set of simplices shared by a subdivided parent
and one of its children as a parent-child duet or, simply, a duet. Duets define the unique
contribution of simplices from a parent diamond to one of its children, and thus, they are in
one-to-one correspondence with the arcs of the dependency graph of ∆ (see Figure 4.13).
Observe that a duet between subdivided parent δps and child δc always contains the central
vertex of δps as well as the spine of δc. In 2D, each duet consists of a single triangle: the
central vertex of the parent and the spine of the child. In 3D, we observe that δps and δc

consists of a pair of face-adjacent tetrahedra whose shared face is defined by the spine of
δc and by the central vertex of δps .

52

(a) A hierarchy of diamonds (b) Diamond dependency relation

Figure 4.12: A hierarchy of diamonds in 2D. (a) Diamonds at four depths (two levels) of the
hierarchy. Each diamond is uniquely identified by its spine (colored edge) and its central vertex
(filled circle). (b) The diamond dependency relation defines a partial order on the diamonds and
can be encoded as a rooted DAG.

4.5 Properties of a hierarchy of diamonds

We now focus on the combinatorial structure of an arbitrary i-diamond δ of dimension
d. This leads to the derivation of closed-form equations for the number of simplices and
vertices in δ as well as the number and location of its parents and children.

Theorem 4.5.1. An i-diamond δ in dimension d is the cross-complex defined by K(hk), a
Kuhn subdivided (d − i)-cube, hk, and BF(hi), the boundary of a fully subdivided i-cube,
hi, i.e.,

δ = K(hk) ⊗ BF(hi)

such that hk and the facets of hi are in affinely independent subspaces of Rd, and the center
of hk and of hi coincide.

Proof. Consider the vertices of an arbitrary d-simplex σ ∈ δ

σ =(v0, v1, . . . , vk−1, vk︸ ︷︷ ︸
(d−i+1) vertices

, vp1 , vp2 , . . . , vp j , . . . , vd︸ ︷︷ ︸
i vertices

),

where k = d − i. Since δ is defined by its spine ψ = (v0, vk), which is the diagonal of a
(d − i)-cube, the vertices in position 0 in all d-simplices of δ are identical, and similarly
for the vertices in position k = d − i. Furthermore, the midpoint vc = 1

2 (v0 + vk) of ψ is the

53

A

B

vc

(a)

A
B

A
B

sδp δcDuet

vc

(b)

Figure 4.13: Parent-child duets are in one-to-one correspondence with the arcs of the dependency
graph and always contain the central vertex vc of the parent (red vertex) as well as the spine vertices
A and B of the child diamond (green vertices). (a) 2D duet between a 0-diamond and a 1-diamond
(b) 3D duet between a 1-diamond and a 2-diamond.

central vertex of δ and is the vertex that will be inserted in position k for all d-simplices
generated during the subdivision of δ.

Due to the use of Maubach’s bisection scheme, vertex vp1 at position (d − i + 1) of
σ, where i > 0, is the center of a (d − i + 1)-cube hp. Also, vp1 is the central vertex of the
diamond δp whose subdivision generated σ. Similarly, for j ≤ i, the vertex vp j at position
(d − i + j) of σ is the center of a (d − i + j)-cube and vp j is the central vertex of the level- j
ancestor diamond of δ.

The proof is split into two parts. We first show the (d − i)-dimensional Kuhn-
subdivided component of δ, K(hk), whose vertices are in the initial (d − i + 1) positions
of any d-simplex σ ∈ δ. Next, we show the fully subdivided i-cube boundary component,
BF(hi), whose vertices are in the final i positions of σ. Since σ is a d-simplex, all of its
vertices must be in affinely independent subspaces of Rd, and thus σ is a cross-simplex of
a (d − i)-simplex from K(hk) and an (i − 1)-simplex from BF(hi).

Kuhn component. Consider the set of d-simplices within δ whose final i vertices are the
same, i.e. if σa and σb are two such d-simplices, then the vertex at position (k + j) of σa

is equal to the vertex at position (k + j) of σb, for 0 < j ≤ i. Since we use Maubach’s
ordering for the simplices, the subspace of Rd spanned by these simplices is a (d − i)-cube
hk, whose diagonal is ψ. Furthermore, since our hierarchy began with a Kuhn subdivision
of h and all i-faces of a Kuhn subdivided d-cube are Kuhn subdivided (Theorem 4.2.1),
these simplices comprise a Kuhn subdivision of hk, i.e. K(hk), and there are (d − i)! such
simplices.

Fully subdivided component. This proof involves a grid that is dual to the one we have
been using (i.e. the primal grid). A vertex of the dual grid corresponds to the center of
a d-cube of the primal grid, and, in general, a j-cube of the dual grid corresponds to a
(d− j)-cube of the primal grid (see Figure 4.14). Observe that the vertices of this dual grid
are offset from those of the primal grid by one half unit in each axis-aligned direction.

Recall that, on the primal grid, the vertex vp j at position (d − i + j) of σ is the center
of a (d− (i− j))-cube whose center coincides with the central vertex of a parent of δ. Then,
on the dual grid, vertex vp j of σ is the center of an (i − j)-cube, 1 ≤ j ≤ i. Note that the
central vertex of δ (which is not a vertex of δ until after it subdivides) is the center of an
i-cube, hi on the dual grid.

54

In the following, consider the collection of d-simplices within δ whose initial (d −
i + 1) vertices are the same, i.e. if σa and σb are two such d-simplices, then the vertex at
position j of σa is equal to the vertex at position j of σb, for 0 ≤ j ≤ (d − i). We can thus
project these d-simplices into an (i − 1)-dimensional subspace of Rd.

Our claim, which we prove through induction on i, is that these (i − 1)-simplices
decompose the boundary of a fully subdivided i-cube hi, e.g. BF(hi). In the base case,
i = 0, and BF(hi) is empty and is therefore the boundary of a fully subdivided 0-cube.

For the inductive step, assume that in an (i− 1)-diamond δp, the final (i− 1) vertices
of each simplex correspond to the boundary of a fully-subdivided (i − 1)-cube BF(hp),
whose simplices therefore have dimension i − 2. When δp is subdivided, its central vertex
v′ coinciding with the center of hp is inserted. In addition, edges are created from v′ to all
vertices of δp, including the vertices of BF(hp). This increases the dimension of each of
BF(hp)’s simplices and generates F (hp) (recall from Section 4.2.3 that F (hp) is defined
as the cross-complex of BF(hp) and the vertex at its center). All simplices generated
during this subdivision contain vertex v′ in position d − i. The final i vertices of each such
d-simplex defines an (i − 1)-simplex, and together these (i − 1)-simplices form the fully
subdivided (i − 1)-cube F (hp).

Now, consider the subset of these simplices that get contributed to an i-diamond δc

that is a child of δp. These are characterized by having the same spine vertices (e.g. v0

and vk). Since δc is an i-diamond its central vertex is the midpoint of an i-cube hi in the
dual grid. Among the 2 · i facets of hi, one is the fully subdivided (i − 1)-cube F (hp). By
symmetry, each of the other facets are subdivided similarly, and, thus, the boundary of hi

is subdivided as a fully subdivided i-cube, i.e. BF(hi). �

Figure 4.14: The midpoint of a 1-cube (black edge) in the primal grid in 3D is the midpoint of a
2-cube (red square) in the dual grid.

Figure 4.15 illustrates how a three dimensional 1-diamond (Figure 4.15a) can be
decomposed into a Kuhn-subdivided 2-cube (Figure 4.15b) and the boundary of a fully
subdivided 1-cube (Figure 4.15c).

Let δ be an i-diamond of dimension d, K(hk) be the (d − i)-dimensional Kuhn-
subdivided component of δ andBF(hi) be the fully subdivided i-cube boundary component
of δ. The decomposition of Theorem 4.5.1 suggests the following closed-form equations
for the number of d-simplices, vertices, parents and children of any diamond δ.

Simplices. The number of d-simplices in an i-diamond is (d − i)!(2i)!! This follows from
the fact that δ is defined by the cross complex of K(hk) which contains (d − i)! cells

55

(a) 1-diamond (d = 3) (b) K(h2) (c) BF(h1)

Figure 4.15: A three dimensional 1-diamond (a) can be decomposed into a Kuhn-subdivided
2-cube h2 (b) and the boundary of a fully subdivided 1-cube h1 (c). In general, an i-diamond in d
dimensions can be decomposed into a Kuhn-subdivided (d − i)-cube and the boundary of a fully
subdivided i-cube.

and BF(hi) which contains (2i)!! cells. The d-simplices of δ are cross simplices
of those from K(hk) and BF(hi). Thus, a diamond contains O(d!) cells. Table 4.1
summarizes these properties for d ≤ 5.

Vertices. The number of vertices in an i-diamond is (2d−i + 3i − 1). Since K(hk) contains
2d−i vertices, and BF(hi) contains 3i − 1 vertices and they are both in (pairwise)
affinely-independent subspaces, the number of vertices in δ is just their sum. Ta-
ble 4.2 summarizes these properties for d ≤ 5.

Children. The number of children of an i-diamond is 2 · (d − i) if i < (d − 1) and 2d

if i = (d − 1). The spines of children of an i-diamond, i < (d − 1), coincide with
diagonals of the 2 · (d − i) facets of the Kuhn-subdivided cube hk. When i = (d − 1),
hk is a 1-cube (an axis-aligned edge), and hi is a (d − 1)-cube. The spine vertices
of δ’s children are located at positions 0 and d of each d-simplex, corresponding to
one of the two vertices of hk and one of the 2d−1 vertices of hi. There are thus, 2d

such children. Table 4.3 summarizes these properties for d ≤ 5.

Parents. The number of parents of an i-diamond is 2 · i, if i > 0 and d if i = 0. The central
vertex of each parent of an i-diamond, i > 0, coincides with the midpoint of one of
the 2 · i facets of hi. When i = 0, hi is a 0-cube coinciding with the central vertex
of δ. Let σ denote one d-simplex of δ and let (v0, vx) denote the spine vertices of
its parents, where v0 is the vertex at position 0 of σ and vx is the spine vertex of the
parent δp that generated σ (at position 1 of σ). Then, since δp is a (d − 1)-diamond,
its spine is aligned with a coordinate axis of Rd, and δ has d parents. Furthermore,
if ψ = (v0, vd) is the spine of δ, then let v = vd − v0 be the difference between these
vertices. The spine of the jth parent of δ is defined by v0 and vx = v0 +2(v ·e j) (where
the (·) indicates the dot product and e j is the jth unit vector). Table 4.4 summarizes
these properties for d ≤ 5.

Duets. Since each simplex in the hierarchy is associated with a single diamond, and is
generated during the subdivision of a single parent diamond, we can determine

56

Table 4.1: Number of d-simplices in an i-diamond of dimension d is (2i)!!(d − i)!. The (d − i)!
factor comes from the Kuhn-subdivided component K(hk) (rows), while the (2i)!! factor comes
from the fully-subdivided i-cube boundary component BF(hi) (columns).

0 1 2 3 4 i

1 1
2 2 2
3 6 4 8
4 24 12 16 48
5 120 48 48 96 384

d d! 2(d − 1)! 8(d − 2)! 48(d − 3)! 384(d − 3)! (2i)!!(d − i)!

Table 4.2: Number of vertices in an i-diamond of dimension d is 2d−i + (3i−1). The 2d−i term
comes from the Kuhn-subdivided component K(hk) (rows), while the (3i − 1) term comes from
the fully-subdivided i-cube boundary component BF(hi) (columns).

0 1 2 3 4 i

1 2
2 4 4
3 8 6 10
4 16 10 12 28
5 32 18 16 30 82

d 2d 2d−1+2 2d−2 + 8 2d−3 + 26 2d−4 + 80 2d−i + (3i − 1)

the number of d-simplices in a parent-child duet as the quotient of the number of
simplices and the number of parents. Since the former is O(d!) and the latter is O(d),
each duet contains O(d!) simplices that are generated simultaneously. Table 4.5
summarizes these properties for d ≤ 5

Figure 4.16 illustrates the decomposition of all classes of diamonds for d ≤ 4. Note
that given the decompositions from dimension d, only two new hypercube decompositions
are necessary for dimension (d + 1): a Kuhn-subdivided (d + 1)-cube and the boundary of
a fully subdivided d-cube.

4.6 Querying an RSB hierarchy

Observe that the hierarchy of simplices and the hierarchy of diamonds are different hi-
erarchical models over the same family of nested RSB meshes, which we refer to as an
RSB hierarchy. Whereas the former is focused on the containment relationship among
RSB simplices, the latter is focused on the dependency relation required for conforming
refinements to an RSB mesh.

We are often interested in extracting conforming meshes from an RSB hierarchy
since cracks in non-conforming meshes correspond to discontinuities in functions defined

57

4-cube

d=1

d=2

d=3

d=4

i=0 i=1 i=2 i=3

Figure 4.16: An i-diamond δ of dimension d is the cross-complex of K(hk), a Kuhn subdivided
(d − i)-cube, hk (top cube in each cell) and BF(hi), the boundary of a fully subdivided i-cube, hi

(bottom cube in each cell). For i < d − 1, the central vertices of children of δ are located at the
midpoints of each (d − i − 1)-face of hk (blue vertices). For i > 0, the central vertices of parents
of δ are located at the midpoints of each (i − 1)-face of hi (red vertices). Figures 4.1b and 4.15a
illustrate the decompositions for a 2-diamond and a 1-diamond in 3D, respectively.

58

Table 4.3: Number of children of an i-diamond in dimension d is 2d when i = (d−1) and 2(d−i),
otherwise.

0 1 2 3 4 i

1 2
2 4 4
3 6 4 8
4 8 6 4 16
5 10 8 6 4 32

d 2d 2(d − 1) 2(d − 2) 2(d − 3) 2(d − 4) 2(d − i)
∣∣∣ 2d

Table 4.4: Number of parents of an i-diamond in dimension d is d when i = 0 and 2i, otherwise.

0 1 2 3 4 i

1 1
2 2 2
3 3 2 4
4 4 2 4 6
5 5 2 4 6 8

d d 2 4 6 8 d
∣∣∣ 2i

Table 4.5: Number of d-simplices in a parent-child duet from a parent diamond to a child i-
diamond is (2(i − 1))!!(d − i)! if i > 0 and (d − 1)! otherwise. Entries are derived as the quotient of
corresponding entries from Tables 4.1 and 4.4.

0 1 2 3 4 i

1 1
2 1 1
3 2 2 2
4 6 6 4 8
5 24 24 12 16 48

d (d − 1)! (d − 1)! 2(d − 2)! 8(d − 3)! 48(d − 2)! (d − 1)!
∣∣∣ (2(i − 1))!!(d − i)!

59

Algorithm 4.1 AdaptiveRefine(σ)

Require: σ is an RSB simplex in a nested RSB mesh Σ

Require: µ is a selection criterion
1: if µ(σ) fails then
2: BisectSimplex(σ)
3: AdaptiveRefine(Child0(σ))
4: AdaptiveRefine(Child1(σ))

on those meshes. We use a selective refinement process to extract a conforming RSB
mesh from an RSB hierarchy. This extracts the mesh with the fewest possible elements
satisfying an application-dependent predicate µ, referred to as the selection criterion.

Recall from Section 2.4.1 that selective refinement is performed by traversing the
graph describing the dependency relation either top-down by starting from a coarse ap-
proximation, bottom-up by starting with the mesh at full resolution or incrementally by
modifying an already extracted mesh. In this process, a conforming RSB mesh Σ, referred
to as the current mesh, is extracted from the hierarchy. The status of a query is described
by a cut C of the hierarchy’s dependency graph, called the active front, separating the set
of modifications that have been applied from those that have not.

A conforming RSB mesh corresponds to a set of modifications that is closed with
respect to the diamond dependency relation. Conforming refinements to an RSB mesh
correspond to the subdivision of complete diamonds, i.e. where all simplices are present
in the current mesh.

Alternatively, a nested RSB mesh corresponds to a set of modifications that is
closed with respect to the containment hierarchy induced by bisections, and does not
need to be conforming. Such meshes are extracted from a hierarchy of simplices using
a simpler adaptive refinement query, outlined in Algorithm 4.1, which does not involve
backtracking or neighbor finding. An adaptive refinement query is initialized with the d!
bintree roots. Nodes that fail the selection criterion µ are bisected and their children are
tested recursively.

When the hierarchy is modeled as a hierarchy of simplices, a conforming mesh is
extracted through the use of a saturated selection criterion (see Section 3.1.4.2), which
incorporates the diamond dependency relation into the selection criterion, in conjunction
with an adaptive refinement query, or through a selective refinement query [DL04] in
conjunction with a neighbor-finding algorithm.

In the former case, saturation of the selection criterion, ensures that the ancestors of
simplices along the bisection edge refine before it does, so tests against a node’s ancestors
are not necessary to guarantee the extraction of conforming meshes. In the latter case, the
neighbor-finding algorithm recursively bisects simplices that are at shallower depths than
the bisecting node. In either case, since the number of simplices in a diamond is factorial
in the dimension d, the complexity of conforming updates to a simplex-based hierarchy is
O(d!).

In contrast, when the RSB hierarchy is modeled as a hierarchy of diamonds ∆,
diamonds are complete once all of their parent diamonds have subdivided. This completion

60

Algorithm 4.2 SelectiveRefine(δ,ForceRefine)

Require: δ is a diamond in a nested RSB mesh Σ

Require: ForceRefine is a boolean
Require: µ is a selection criterion

1: if ForceRefine is true or µ(δ) fails then
2: // Ensure diamond is complete
3: for all δp ∈ Parents(δ) do
4: if δp is not subdivided then
5: SelectiveRefine(δp, true)
6: // Bisect all simplices of δ
7: SubdivideDiamond(δ)
8: // Check all children
9: if ForceRefine is false then

10: for all δc ∈ Children(δ) do
11: SelectiveRefine(δc, false)

process is carried out by (recursively) forcing all parents of δ to refine, thereby satisfying
the transitive closure of the dependency graph. The active front of the query consists of
the arcs of the dependency graph connecting subdivided diamonds to their unsubdivided
children. Thus, the current mesh Σ consists of the simplices associated with the parent-
child duets corresponding to these arcs (see Figure 4.17).

Algorithm 4.2 outlines a top-down selective refinement query for a hierarchy of
diamonds, which is initialized using the root diamond of the hierarchy. Most diamonds
are checked against the selection criterion µ. However, forced refinements short-circuit the
selection criterion using the boolean ForceRefine (Line 1). The algorithm consists of three
steps. First, we complete the diamond by recursively subdividing its parents (Lines 3–5).
Next, the diamond is subdivided (Line 7). Finally, the children of diamonds that are not
forcibly refined are checked for refinement (Lines 9–11). Since a diamond δ has O(d)
parents, and each diamond is refined only once, diamond refinements in SelectiveRefine
have an amortized complexity of O(d).

Figure 4.17 illustrates the results of a selective refinement query on a 2D hierarchy
of diamonds after subdividing the root diamond (filled red circle), three of its children
(filled orange circles), and one of its grandchildren (filled green circle).

4.7 Discussion

We have generalized the notion of a diamond to arbitrary dimensions as a cross-complex of
two related simplicial decompositions of lower-dimensional hypercubes. This has enabled
us to analyze the properties of diamonds and to derive closed-form equations for the
number of d-simplices, vertices, parents and children of all types of diamonds in arbitrary
dimensions.

In particular, we proved that an i-diamond in d-dimensions contains (d − i)!(2i)!!
d-simplices. Thus, representations in which the primitives are d-simplices become very

61

(a) Closed set of modifications (b) Active front (c) Current mesh Σ

Figure 4.17: During selective refinement, a conforming RSB mesh Σ (c) is extracted from a
hierarchy of diamonds ∆ through a traversal of its dependency graph (a). Σ corresponds to the
active front (b), a closed cut of the DAG describing ∆’s dependency relation (a). Simplices in the
current mesh (c) belong to duets in the active front and correspond to subdivided parents (filled
circles) of unsubdivided diamonds (unfilled circles).

expensive to store as the dimension d of the problem domain increases. Specifically,
since neighbor-finding operations are required for extracting conforming meshes before
any bisection operation, extracting conforming modifications to a simplicial complex is a
problem with O(d!) complexity.

We also identified parent-child duets, which are in one-to-one correspondence with
the arcs of the dependency graph of a diamond hierarchy, as the atomic building block
of conforming RSB meshes. This is useful for our efficient selective refinement query
(Algorithm 4.2) for compact encodings of RSB meshes (Chapter 6), for efficiently travers-
ing these meshes (Chapter 8) and for transmitting information down the hierarchy during
refinement (Chapter 9). Since a diamond has O(d) parents, a diamond-based approach
enables conforming updates to an RSB mesh in (amortized) linear time and space.

Although saturated metrics are typically applied to simplex-based representations,
they subsume the diamond hierarchy into the selection criterion. Thus, our analysis of
the diamond-dependency relation implies that a diamond-based generation for saturated
metrics have O(d) complexity, while the typical simplex-based generation, in which errors
are passed up through the containment relation, have O(d!) complexity.

Since diamond hierarchies satisfy the MultiTessellation (MT) model [DPM97],
and are defined by stellar refinement along an edge of the mesh, we can view a dia-
mond hierarchy as a restricted version of a multiresolution model based on half-edge
collapses [DDM+05]. Consider the (d · N)th Maubach complex Md·N , for some n ∈ N.
Then, if we restrict our edge collapse operations to subdivided diamonds (with all of their

62

simplices), and collapse the central vertex of such a diamond into one of its spine vertices,
we obtain a partial order on these half-edge collapses that is equivalent to that of the
diamond dependency relation.

Finally, we observe that the hierarchy of simplices defines a containment hierarchy
over the domain, but nested bisections alone are not sufficient to guarantee the extraction
of a conforming mesh, which requires a saturated selection criterion or a neighbor finding
algorithm. On the other hand, the diamond dependency relation ensures the extraction
of conforming meshes but does not define a containment hierarchy. Thus, conforming
refinements require the subdivision of a diamond’s parents before it can subdivide, which
can propagate refinements up the hierarchy. Thus, a nested refinement domain would
enable a simple top-down adaptive refinement algorithm that guarantees the extraction
of conforming meshes. In 2D, the octagonal descendant domain of a diamond [Tan95,
BLV03, Ger03b] (see Figure 3.4) defines a nested hierarchy of octagons satisfying these
conditions.

A promising initial result towards this aim for three dimensional diamond hierar-
chies [WD10c] builds on the 2D octagonal descendant domains to define nested refinement
domains in 3D. We observe that the descendant domain of a diamond has a fractal bound-
ary (see Figure 4.18b) which would be difficult to work with in an interactive setting, and
introduce two new nested refinement domains that would be easier to work with. The
convex descendant domain of a diamond is the convex hull of its descendant domain (see
Figure 4.18c), and the bounding box descendant domain is the axis-aligned bounding box
of its descendant domain (see Figure 4.18d). All three nested refinement domains extend
the domain under consideration by at most a factor of three. The original descendant do-
main is typically the region under consideration for saturated error metrics [Paj98, GP00],
but can be used to precompute the range of field values covered by all descendants (i.e.
a saturated analogue of the Min/Max octree [WVG92]). This can also be conservatively
estimated for a diamond δ from an unsaturated Min/Max range by considering the range
within a constant number of diamonds that cover the convex descendant domain or bound-
ing box domain of δ. The bounding box domain can be used to quickly determine if a
diamond intersects a geometric object in the domain, for example, in hierarchical frustum
culling algorithms.

63

(a) Three classes of diamonds in 3D

(b) Descendant domains

(c) Convex descendant domains

(d) Bounding box descendant domains

Figure 4.18: The three classes of diamonds (a) and their corresponding nested refinement domains
(b-d) in 3D. In each case, the corresponding refinement domain of one of the diamond’s parents,
grandparents and great-grandparents (right column) illustrates the nested nature of these shapes.

64

Chapter 5

Supercubes: A high-level primitive for RSB hierarchies

We are often interested in associating information with coherent subsets of the entities
of an RSB hierarchy. This includes its geometric entities, such as its vertices, edges,
simplices and diamonds; its hierarchical entities, such as the parents or children of an
element; and the connectivity among neighboring elements. A common approach is to
associate information with only the desired elements, and to index these in a spatial data
structure. However, this can impose significant overhead when an element’s index requires
more storage than the data we would like to associate with it.

Due to the way RSB meshes are generated, there is typically a great deal of coher-
ence among its elements. For example, when dealing with a variable-resolution diamond
mesh extracted from the hierarchy, we have a sparse subset of the total dataset, but the
presence of a diamond in the mesh strongly implies the presence of its neighbors or those
of its parents or children, in the mesh.

In particular, since diamond hierarchies are defined in terms of the subdivision of
diamonds along their spines, and vertices are inserted at the midpoints of these edges, it is
useful to consider the spatial and hierarchical relationships among the edges of a nested
RSB mesh.

An analysis of this structure reveals a higher level of symmetry within the hierarchy
than that which is apparent at the level of diamonds. Specifically, each level of resolution
is tiled by a repeating pattern of edges arranged in a cubic domain, which we call a
supercube and derive from the fully subdivided hypercubes of Section 4.2.3.

In this chapter, we analyze fully subdivided hypercubes to better understand the
structure of nested RSB meshes (Section 5.1). We then propose supercubes as the basis for
a higher-level primitive within RSB hierarchies, and analyze their properties in Section 5.2.
In Section 5.3, we discuss some implications of supercubes. We present our encoding of
the elements within a supercube and of collections of supercubes in Chapter 6.

5.1 Tiling space with Kuhn cubes

As discussed in Section 4.2.1, one of the interesting properties of the Kuhn subdivision
K(h) of a hypercube h is that it provides a Kuhn subdivision to the faces of h (The-
orem 4.2.1). Furthermore, opposite faces of K(h) are compatibly decomposed, so a
regularly sampled domain can be tiled by Kuhn-subdivided cubes [Kuh60, Tod76] (see
triangulations in Figure 5.3).

When a hyper-rectangular domain is tiled by Kuhn cubes using only translation,
this tiling is referred to as Freudenthal’s triangulation [Tod76] and is typically denoted
as K1 (see Figure 5.1a). Alternatively, the Tucker-Whitney triangulation [Tuc45, Whi57],
typically denoted as J1, is obtained over the same grid by reflecting adjacent Kuhn cubes

65

(a) K1 triangulation (b) J1 triangulation

Figure 5.1: Tiling the plane with Kuhn squares. (a) Translating adjacent tiles leads to Freuden-
thal’s triangulation K1. (b) Reflecting adjacent tiles leads to the Tucker-Whitney triangulation
J1.

(a) Level ` (b) Level ` + 1 (c) Level ` + 2

Figure 5.2: The J1 triangulation is the canonical tiling for RSB hierarchies. It tiles each level of
resolution of d-dimensional space with scaled copies of fully subdivided d-cubes. Three consec-
utive levels of resolution covering the same 3D domain are shown, containing 1, 8 and 64 cubes,
respectively. One fully subdivided cube at each level or resolution is highlighted in blue.

across cube facets. Due to the reflectional symmetry, J1 can be viewed as a tiling of an
integer lattice by clusters of 2d oriented Kuhn-cubes, which define the fully subdivided
hypercubes F (see Figures 5.1b and 5.2 for examples in 2D and 3D).

Given a Kuhn-subdivision K(Ω) of a hypercubic domain Ω, Freudenthal’s triangu-
lation [Fre42, Bey00], generates K1 by applying regular refinement to its simplices (blue
arrows in Figure 5.3). Alternatively, this decomposition can be obtained by applying
Kuhn’s subdivision to the leaves of a complete 2d-tree (red arrows in Figure 5.3). Since
K1 is generated using regular refinement of hypercubes or of simplices these meshes are
referred to as triangle quadtrees in 2D [LS00], tetrahedral octrees in 3D and generally as
simplicial 2d-trees [MW95].∗ K1 is therefore the canonical decomposition for red/green
refinement meshes.

In contrast, the Tucker-Whitney triangulation J1 can be obtained by applying RSB
operations (a multiple of d times) to all elements of K(Ω) [Mau96] (green arrows in Fig-

∗Actually, Moore and Warren [MW95] refer to the d-dimensional variant as a simplicial quadtree.

66

ure 5.3), or by reflecting the Kuhn-triangulations in facet-adjacent hypercubes (red arrows
in Figure 5.3). Thus, J1 is the canonical decomposition for RSB meshes.

Properties of fully subdivided hypercubes. Let us consider the number of edges in a
fully subdivided hypercube F (h) of dimension d. Recall that the number of i-faces of
a d-cube is

(
d
i

)
2d−i. The subdivision F (hi) of each i-face hi ⊆ h induced by F (h) has 3i

vertices, and there is an edge from the midpoint of F (hi) to each of the 3i − 1 vertices on
its boundary (see Figures 4.5c and 4.6d). Since each of these edges is internal to hi, and
not to any other face of h, we can count all of the unique edges within F (h) as:

d∑
i=0

(
d
i

)
2d−i(3i − 1) =

d∑
i=0

(
d
i

)
2d−i · 3i −

d∑
i=0

(
d
i

)
2d−i

= 5d − 3d.

(5.1)

The latter equality follows from the binomial theorem (see Appendix C).
Thus, there are 5d − 3d edges in a fully subdivided d-cube.

5.2 Supercubes

Although fully-subdivided cubes are the underlying symmetry unit within RSB hierarchies,
and tile each level of resolution of J1, we observe that simplices on their boundaries can
be incident to several fully-subdivided cubes. We therefore introduce the supercube as a
high-level primitive for RSB hierarchies.

Supercubes provide a unique mapping from each element within the hierarchy to
a single entity through the use of the half-open interval convention [Sam06]. That is,
each supercube is associated with the simplices at a given level of resolution within the
RSB hierarchy that are within its domain or that coincide with its lower boundaries but
not those that coincide with its upper boundaries. For example, we consider any edge
of a fully subdivided cube F whose endpoints are both on an upper boundary of F ,
to belong to a neighboring supercube. Figure 5.5b illustrates the edges that remain in
two-dimensional and three-dimensional supercubes after applying the half-open interval
convention to their corresponding fully subdivided cubes. Solid lines indicate edges that
remain in the supercube, and dashed lines indicate the edges whose endpoints both lie on
an upper boundary of the supercube, and are thus indexed by a neighboring supercube.
Figure 5.4 illustrates supercubes covering the same domain at three levels of resolution.
Note that each edge is only associated with a single supercube.

Entities within the hierarchy that are not simplices can be associated with supercubes
through a representative proxy simplex. For example, due to the one-to-one correspon-
dence between diamonds and their spines, a diamond can be associated with the same
supercube as its spine.

Let the origin of a hypercube h be the vertex of h that is at its lower interval in all
dimensions. For example, on the unit cube, the origin is the vertex 0d, and its opposite
vertex along a diagonal is 1d.

We first consider the number of i-faces of h that remain when utilizing the half-open

67

K₁ tilingHypercube lattice

Level 0

Level 1

Level 2

Level 3

J₁ tiling

Figure 5.3: Relationship between regular refinement of hypercubes, the Freudenthal triangulation
K1 and the Tucker-Whitney triangulation J1. Regular refinement of hypercubes produces a regular
hypercubic lattice, i.e. a complete quadtree, octree or 2d tree (gray arrows). A complete 2d-tree can
be triangulated through a Kuhn-subdivision of its leaves (red arrows). Tiling by translation across
hypercube facets produces the Freudenthal triangulation K1, while tiling by reflection across facets
produces the Tucker-Whitney triangulation J1. Applying regular refinement to each simplex in K1
at level ` produces K1 at level ` + 1 (blue arrows). Alternatively, applying d steps of RSB to each
simplex in K1 or J1 at level ` produces J1 at level ` + 1 (green arrows).

68

(a) Level ` (b) Level ` + 1 (c) Level ` + 2

Figure 5.4: Supercubes (in 2D) are structured sets of edges tiling each level of resolution within
an RSB hierarchy. Three consecutive levels of resolution covering the same domain are shown,
containing 1, 4 and 16 supercubes, respectively. Dashed edges are excluded due to the half-open
interval rule.

interval convention. We do so through a mapping of h to the unit cube, where the origin is
mapped to 0d and its opposite vertex is mapped to 1d. Then an i-face of h that is incident
to the origin will have a diagonal along i of the d coordinate axes, but not the remaining
(d − i) coordinate axes, i.e. its opposite vertex will have i coordinates at position 1 and
(d − i) coordinates at position 0 along its axis. The number of i-faces within the half-open
interval is thus

(
d
i

)
, which leaves a total of

∑(
d
i

)
= 2d faces of the original 3d faces re-

maining after applying the half-open interval convention. Note that each such face can be
mapped to a vertex of h defined by the unique diagonal from the origin to this vertex (see
Figure 5.5).

Number of edges. We are now able to determine the number of edges in a supercube s as
the number of edges in a fully subdivided cube F that remain after applying the half-open
interval condition. Since the number of i-faces is

(
d
i

)
, and each i-face contributes (3i − 1)

edges, there are a total of

d∑
i=0

(
d
i

)
(3i − 1) =

d∑
i=0

(
d
i

)
3i −

d∑
i=0

(
d
i

)
= 4d − 2d

(5.2)

edges remaining in a supercube (see Figure 5.5b).†

Number of vertices. To determine the number of vertices in a supercube, we rearrange

†This equality follows from the binomial theorem, see Appendix C.

69

(a) Faces of a half-open d-cube

(b) Edges of a supercube

Figure 5.5: (a) A half-open d-cube retains the
(
d
i

)
i-faces incident to its origin. In particular it has

a single d-face (red) and a single vertex corresponding to its origin (white). (b) Each i-face of a
half-open cube contributes its 3i − 1 internal edges to a supercube.

(a) Cube diagonals (b) Face diagonals (c) Cube edges

Figure 5.6: Edges of a three-dimensional supercube s that remain after applying the half-open
interval to its corresponding fully subdivided cube. The edge colors highlight the 2d copies of

(
d
i

)
types of i-diamonds within s. (a) Eight edges aligned with a cube diagonal. (b) Eight groups of
three edges aligned with a face diagonal of a cube. (b) Eight groups of three edges aligned with an
edge of a cube.

70

the final term of Equation 5.2 as:

4d − 2d = 2d · (2d − 1)

= 2d ·

 d∑
i=0

(
d
i

)
− 1


= 2d ·

d∑
i=1

(
d
i

) (5.3)

which better highlights the geometry of a fully subdivided hypercube.‡ That is, a supercube
s is defined by 2d hypercubes, each locally satisfying the half-open interval convention.
The single face of each such such hypercube that does not correspond to an edge in s is
a vertex of s (i.e. a 0-face). So there are 2d vertices remaining, which correspond to the
origins of the 2d Kuhn cubes that comprise the supercube s.

However, these vertices do not uniquely correspond to a single supercube. Consider
the origin of a supercube at level `, as in Figure 5.4a. Then this point belongs to a
supercube at each successive level within the hierarchy (e.g. the lower left corners in
Figures 5.4(b) and (c)).

Instead of mapping vertices of the hierarchy to supercube vertices, we can use the
correspondence between edges in the hierarchy and their unique midpoints to uniquely
map the vertices. So, each supercube uniquely indexes 4d − 2d vertices of the hierarchy.

Number of simplices. Supercubes also provide a mapping to the d-simplices within the
hierarchy, as considered by Hebert in 2D [Heb98] and 3D [Heb94] and generalized to
arbitrary dimensions by Pascucci [Pas00] and by Atalay and Mount [AM07] under the
term subtree of simplices.

Consider a d-simplex σ of class-i at depth m = (d · ` + i) in a d-dimensional RSB
hierarchy. Then we can index σ according to its containing Kuhn-cubeKσ at depth d · ` in
the hierarchy (see Figure 5.7a), its class-0 ancestor simplex σ0 withinKσ (see Figure 5.7b)
and a traversal of the local bintree from σ0 to σ (see Figure 5.7c).

Since its containing Kuhn cube Kσ is one of the 2d subcubes within a supercube s,
we refer to this as its reflection number ir ∈ [0, 2d). Its class-0 ancestor σ0 is one of the
d! class-0 simplices within Kσ, which we refer to as its permutation number ip ∈ [0, d!).
Finally, the bintree rooted at σ0 is a complete binary tree of depth d − 1. This provides
σ with a unique descendant number id ∈ [0, 2d − 1). Thus, a supercube uniquely indexes
2d · (2d − 1) · d! distinct RSB simplices.

Number of diamonds. The one-to-one correspondence between edges of an RSB hier-
archy and the spines of diamonds provides a unique association from each diamond to a
single supercube. Specifically, each supercube indexes 4d − 2d = 2d(2d − 1) diamonds.

Furthermore, we can break this down by diamond class to see how many copies
of each class of diamond are in a supercube. Recall that the spine of an i-diamond is
aligned with the diagonal of an axis-aligned (d − i)-cube, which is an i-face of a d-cube.

‡The latter term is achieved by incorporating the −1 into the sum’s index using the identity
(

d
0

)
= 1.

71

(a) Reflection ir (b) Permutation ip (c) Descendant id

Figure 5.7: Each RSB simplex σ within a supercube (shown in 2D) is uniquely indexed by
the reflection number ir of its containing Kuhn cube Kσ (a), the permutation number ip of its
containing class 0 simplex σ0 within Kσ (b) and the descendant number id of σ from σ0 (c).

Returning to Equation 5.3, we see that there are
(

d
i

)
i-diamonds associated with each of

the 2d Kuhn-cubes within a supercube s (see Figure 5.6).§

Figure 5.8 illustrates the four 0-diamonds and twelve 1-diamonds that map to each
2D supercube. Note that the spines of the diamonds coincide with supercube edges and
that the midpoint of each edge coincides with the diamond’s central vertex. Similarly,
Figure 5.9 illustrates the eight 0-diamonds, twenty-four 1-diamonds and twenty-four 2-
diamonds that map to each 3D supercube. Observe that there are 2d copies of each of
the following (a) one 0-diamond in Figure 5.9a (blue, green, orange or red); (b) three 1-
diamonds in Figure 5.9b (orange, green and blue); and (c) three 2-diamonds in Figure 5.9b
(orange, green and blue).

By comparing the edges of a supercube (Figures 5.6) to its diamonds (Figures 5.8
and 5.9), we see that there is a directional bias to the alignment of diamond spines due to
the directional bias within reflected Kuhn-cubes. However, when considered at the level
of a supercube, the diamonds at the same relative positions are identical. We therefore
refer to a diamond at a particular location within a supercube as a unique diamond type,
of which there are 4d − 2d. Table 5.1 lists the number of i-diamonds in a d-dimensional
supercube, d ≤ 5.

Number of parents. We can also consider a mapping from the set of diamond parents to
a supercube. For this, we can associate the set of parents of a given diamond to the edge of
the supercube corresponding to its spine. This is an especially interesting property due to
the one-to-one correspondences between parents of a diamond, arcs of the the dependency
graph and duets in the hierarchy.

Recall that a 0-diamond has d parents, and an i-diamond has 2i parents otherwise.
Then, by multiplying the number of diamond classes by the number of parents per dia-

§For this, we used the binomial identity
(

d
i

)
=

(
d

d−i

)
to change the meaning of the terms to i-diamonds

which correspond to the (d − i)-faces

72

Table 5.1: Number of i-diamonds in a d-dimensional supercube is
(
d
i

)
2d.

0 1 2 3 4 i Total

1 2 2
2 4 8 12
3 8 24 24 56
4 16 64 96 64 240
5 32 160 320 320 160 992

d
(

d
0

)
2d

(
d
1

)
2d

(
d
2

)
2d

(
d
3

)
2d

(
d
4

)
2d

(
d
i

)
2d 4d − 2d

(a) Twelve vertices (b) Four 0-diamonds (c) Eight 1-diamonds

Figure 5.8: A 2D supercube s contains four 0-diamonds (b) and eight 1-diamonds (c), whose
central vertices coincide with the midpoints of its twelve edges (a).

mond, we find the number of parents in a supercube to be:¶

2d · d + 2d
d−1∑
i=1

(
d
i

)
· 2i = 2d ·

d +

d−1∑
i=1

(
d
i

)
· 2i


= 2d ·

 d∑
i=0

(
d
i

)
· 2i − d


= 2d ·

(
2d · d − d

)
= 2d · (2d − 1) · d.

(5.4)

Since there are 2d · (2d − 1) diamonds in a supercube, the average number of parents per
diamond in a supercube is d.

¶The inductive proof that
∑d

i=0

(
d
i

)
· 2i = 2dd is presented in Theorem C.2.1 of Appendix C.

73

(a) Eight 0-diamonds (b) Twenty-four 1-diamonds (c) Twenty-four 2-diamonds

Figure 5.9: A supercube in 3D is composed of eight 0-diamonds (a) twenty-four 1-diamonds (b)
and twenty-four 2-diamonds (c). Alternatively, it contains 2d copies of a single 0-diamond, three
1-diamonds and three 2-diamonds.

5.3 Discussion

Supercubes capture the symmetry of the decomposition structure within the RSB hierar-
chy. In contrast to diamonds, which have d distinct similarity classes and different spine
orientations within each class, or to RSB simplices which also vary along the various
vertex permutations, all supercubes are identical up to translation and uniform scaling by
a factor or 2.

This suggests the utility of supercubes as an algorithmic primitive for processing
RSB hierarchies and for reasoning about their relationships. When designing algorithms
for RSB hierarchies, we can guarantee that all possible cases are handled by accounting
for the distinct relationships within and between supercubes.

The supercube perspective of RSB hierarchies reinforces our analysis from Chap-
ter 4 of the relative complexities of the simplex-based and diamond-based approaches.
There are:

• 2d · (2d − 1) distinct diamond types (also, unique edges and vertices),

• 2d · (2d − 1) · d distinct parents of diamonds (also, unique parent-child duets), and

• 2d · (2d − 1) · d! distinct RSB simplices of order d.

Thus, for each of the 2d(2d − 1) diamond types in the hierarchy, there are an average of d!
RSB simplices and an average of d parents.

Similarly, supercubes provide a memory-less means of iterating through the ele-
ments in an RSB hierarchy, leading to streaming algorithms for RSB hierarchies. As can be
seen in the right column of Figure 5.3, the origins of supercubes form a hypercubic lattice
that tiles each level of resolution within the hierarchy. Since it is trivial to iterate through
a regular grid, all that remains is an efficient method of iterating through the elements of
a given supercube. We provide this in Chapter 6 by considering the edge midpoints of a
supercube as offsets from its origin. In contrast, previous approaches [ZCK97, BPSC04]
process the entire hierarchy through a breadth-first traversal of the DAG, in which memory

74

is required for each element. Since the number of simplices double at each successive
depth in the hierarchy, this can become prohibitive after a few levels of resolution within
the hierarchy. We exploit these properties to generate the approximation errors of a mul-
tiresolution scalar field in Section 7.1.1, and in our GPU-based parallel framework for
multiresolution terrain processing [YWD11].

Supercubes also provide a formal approach to processing collections of diamonds
that are ‘outside the cube,’ that is, the base domain is no longer restricted to a hypercube of
resolution (2N + 1)d. This is useful from a practical point of view, since many datasets of
interest are not hypercubic, and embedding the dataset in its smallest enclosing hypercube
can impose a significant amount of unused storage space. A similar type of decomposition
is used by Maubach [Mau95] and by Tanaka et al. [Tan95,TTW03], where a rectangular (or
cuboid-shaped) domain is initialized with Freudenthal’s K1 triangulation, and is converted
into an RSB decomposition after one level of refinement (as in the arrows leading from
K1 to J1 at the next level of resolution in Figure 5.3).

We explore the use of supercubes as a clustering primitive for coherent subsets of an
RSB hierarchy in Chapter 7 to encode closed subsets of the vertices of a multiresolution
scalar field as well as its extracted RSB meshes. This is useful in reducing the geometric
and sampling overhead when representing scalar fields that are oversampled and for scalar
fields in which values for some regions are not defined or are not available. This can also
be useful in dynamic datasets in which we would like to be able to locally increase the
resolution without requiring the entire field to have uniform high resolution.

Finally, the supercube can be viewed as an intermediate primitive between spatial
decompositions based on nested hypercubes, such as 2d-trees, and those based on nested
RSB hierarchies. Compared to 2d-trees, where each subdivision adds 2d cubes to a mesh,
RSB hierarchies provide significantly more adaptivity by spreading this growth over the
course of d refinements. The 2d children of a 2d-tree node can be seen as corresponding
to the 2d 0-diamonds of a supercube σ covering the same domain as a 0-diamond one
level higher in the hierarchy, while the intermediary i-diamonds in a supercube enable the
increased adaptability achieved by RSB hierarchies compared to 2d-trees. In Chapter 10,
we exploit the connection between hypercubes and 0-diamonds to define a multiresolution
model over hypercubes generated by regular refinement defining a dependency relation for
balanced hypercubic refinement. We also propose a supercube-based pointerless encoding
for nested hypercubic meshes extracted from a balanced 2d-tree.

75

Chapter 6

Encoding diamond hierarchies

In this chapter, we introduce a novel interpretation of the binary representation of a di-
amond’s central vertex, vc in terms of three components: its scale, encoding its level of
resolution in the hierarchy; its embedding supercube at this level of resolution; and its dia-
mond type, encoding its class and position within its embedding supercube. This provides
all the required information to compute the local mesh topology of a d-dimensional dia-
mond, including the location of its vertices and simplices, as well as the central vertices of
its parents and children in terms of scaled offsets from vc. This leads to the development
of an efficient pointerless representation for d-dimensional hierarchies of diamonds as
well as for simplicial complexes extracted from such hierarchies. This encoding is derived
from the diamond decomposition of Chapter 4 as well as the analysis of supercubes from
Chapter 5.

A key distinction needs to be made between a hierarchy of diamonds ∆, which is a
multiresolution model over the domain induced by the diamond dependency relation and
is encoded as a DAG of diamonds, and a conforming variable resolution RSB mesh Σ

that we extract from ∆, which corresponds to a cut of the arcs of the DAG, separating the
modifications that have been applied from those that have not.

In the following, we assume that a d-dimensional hierarchy of diamonds ∆ covers
a regularly sampled hypercubic domain Ω containing (2N + 1)d samples, where N is
the maximum level of resolution LevelMax and vertices of diamonds in ∆ have integer
coordinates in the range [0, 2N].

Due to the one-to-one correspondence between diamonds and grid points, a diamond
δ ∈ ∆ is uniquely defined by its spine ψ, or alternatively, by its central vertex vc, the unique
midpoint of ψ.

We first provide our implicit encoding for diamonds in Sections 6.1– 6.1.4, and
illustrate this encoding through an example in Section 6.1.5. We then discuss how we
encode supercubes and collections of supercubes in Section 6.2. In Section 6.3, we discuss
simplex-based, diamond-based and supercube-based encodings for nested RSB meshes.

6.1 Encoding diamonds

The regularity of the vertex distribution in ∆ and the subdivision operation, enables us to
derive all geometric and hierarchical relationships of a diamond δ directly from the binary
representation of the coordinates (x1, x2, . . . , xd) of its central vertex vc.

Let

77

vc =


x1 = x1

1 x2
1 . . . xm

1 τ1
1 τ

2
1 00 . . . 0

x2 = x1
2 x2

2 . . . xm
2 τ1

2 τ
2
2 00 . . . 0

...

xd = x1
d x2

d . . . xm
d︸ ︷︷ ︸

s

τ1
d τ

2
d︸︷︷︸

τττ

00 . . . 0︸ ︷︷ ︸
γ



T

(6.1)

be the binary representation of vc. Our encoding depends on three quantities which can
be efficiently extracted from the binary representation of the central vertex of a diamond
through bit shifting operations: the scale γ, the type τ and the supercube origin s of δ.

6.1.1 Diamond scale
Let Trailing(xi) denote the number of trailing zeros in the binary representation of a
coordinate xi of vc. Then, the minimum of the number of trailing zeros among each of the
d coordinates of vc encodes the scale γ of δ, e.g.

γ = min
i≤d

(Trailing(xi)).

Then, for a diamond δ at scale γ, the rightmost γ bits in any coordinate of vc are zero, but
at least one of the bits in position γ + 1 (e.g. τ2) is nonzero.

Recall from Section 4.4 that the depth of an i-diamond δ is the length of a path
from the root diamond to δ in the dependency graph of ∆, i.e. the number of subdivisions
required to obtain δ. The level of an i-diamond δ is the number of i-diamonds above δ
along any path to the root diamond. Since the class of a diamond cycles with every d
subdivisions, its depth is thus Level(δ) ∗ d + i.

The level and scale are related through LevelMax as

Level(δ) = LevelMax − γ.

6.1.2 Diamond type
The two bits at position γ + 1 and γ + 2 of each coordinate xi, which we denote as τ2

i and
τ1

i , respectively, uniquely encode the type τ of δ. Since vertices in ∆ have d coordinates,
and τ has two bits for each coordinate, there are (22)d = 4d possible values for τ. However,
the definition of γ precludes the 2d cases where all bits of τ2 are zero. This gives us the
4d − 2d diamond types of Section 5.2.

The similarity class of δ is encoded within τ as the number of zeros in position τ2,
e.g. an i-diamond has (d − i) nonzero bits at this position, and there are

(
d
i

)
variations in

this encoding. Since there is no similar restriction on the bits in position τ1, we have 2d

possibilities for τ1, corresponding to the 2d subcubes within its embedding supercube, for
the total

(
d
i

)
2d distinct types of i-diamonds.

We can now interpret the diamond types 4d − 2d in terms of midpoints of edges
of the supercube as defining a local grid of 4d points, where each of the d coordinates

78

indexes into this grid using two bits (with four values). Furthermore, the 2d vertices of the
supercube (i.e. where all τ2 bits are zero) are not valid midpoints of edges on this grid (see
Figure 6.1).

The oriented direction of δ’s spine ψ can be computed from τ using the following
encoding. First, initialize a sign variable sgn to +1. Component ui of the direction vector
~u is then:

ui =


1, if τ1

i = 0 and τ2
i = 1

−1, if τ1
i = 1 and τ2

i = 1
0, if τ1

i = 0 and τ2
i = 0

0, if τ1
i = 1 and τ2

i = 0.

(6.2)

In the fourth case, where τ1
i = 1 and τ2

i = 0, we multiply the sign sgn by −1. This
global negation corresponds to a reflection across the median plane of s corresponding to
coordinate axis i.

The orientation of spine ψ is then:

orient(ψ) = sgn ∗ ~u. (6.3)

Note that Equation 6.3 maps diamond types into axis aligned vectors with 3d − 1
possible values (~ui ∈ {−1, 0,+1}, but ~u , 0d), and relates our diamond type to the oriented
spine direction of Gregorski et al. [GDL+02].

6.1.3 Supercube origin
The final m = N − (γ + 2) bits in each of the coordinates of vc encode the origin of the
supercube s containing δ. Since there are no restrictions on the values of these bits, the
origins of supercubes at a fixed level of resolution ` = m + 2 are points on a regular
d-dimensional grid that has been scaled by a factor of 2γ+2.

The encoding of Equation (6.1) provides an alternate interpretation for the diamond
type τ as the scaled offset of its central vertex vc from its containing supercube’s origin
(see Figure 6.1), i.e.

vc = s · 2γ+2 + τ · 2γ. (6.4)

Since the type τ of a diamond δ is determined by the supercube edge with which its
spine coincides, each supercube can be seen as containing a single copy of each unique
type of diamond within the hierarchy.

6.1.4 Diamond components
The geometric and hierarchical components of a diamond δ such as the location of its
vertices and of the central vertex of its parent and children diamonds can be calculated as
scaled offsets from its central vertex vc. These offsets are scaled d-dimensional vectors
~g = 2γ · ~f such that fi ∈ {−1, 0, 1} and γ is the scale of δ. Specifically, a component of
diamond δ, at scale γ, whose center is p and whose unscaled offset from vc is ~f can be
computed as:

p = vc + 2γ · ~f . (6.5)

79

00
00

01

10

11

01 10 11

(a) Supercube diamonds

00

10

11

(b) Diamond as offset

Figure 6.1: A diamond’s spine coincides with an edge (solid lines) of a single supercube (a).
Alternatively, a diamond’s central vertex lies at the midpoint of a supercube edge (b). The midpoints
of edges of a supercube implicitly define a local grid of 4d locations (indexed by two bits), of which
its 2d vertices are not the midpoints of edges.

These offsets can be derived directly from the type τ and the scaleσ of δ using the diamond
decomposition from Theorem 4.5.1 or can be precomputed and accessed at runtime from
a lookup table.

6.1.4.1 Kuhn-subdivided component

Since the class i of δ is encoded in the number of zeros in the rightmost bits of τ, the
subspace of Rd spanned by the Kuhn subdivided (d− i)-cubeK(hk) is defined by the (d− i)
coordinates of τ2 with value τ2

j = 1.
Specifically, δ’s spine ψ = (v0, vk) can be calculated using the oriented spine di-

rection ~u. That is, v0 has offset vector ~f = −~u and vk has offset vector ~f = ~u. Their
coordinates can be obtained by plugging ~f into Equation 6.5. The remaining vertices and
cells can be found through an affine mapping to the canonical subdivision of Section 4.2.1,
or, if d is reasonably small, through precomputed lookup tables.

Since the 2 · (d − i) children of δ have central vertices that coincide with the facets
of hk (for i < (d − 1)), offsets from vc to their central vertices can be computed as ~f = ±e j,
in all coordinates that τ2

j = 1. When i = (d − 1), the 2d children of δ are at offsets
~f = (±1,±1, . . . ,±1), and at scale γ − 1.

6.1.4.2 Fully-subdivided component

The i-dimensional subspace spanned by BF(hi) is along the coordinates in which τ2
j = 0.

Consequently, for i > 0, offsets to the parents of δ are ~f = ±e j, in all coordinates that
τ2

j = 0. For i = 0, we can use the oriented spine direction to find vertices v0 and vd of
the spine. Then, as in Section 4.5, v = vd − v0 and the central vertices of a diamond’s d
parents are located at offset ~f = −u + v · e j.

Since the vertices and d-simplices of BF(hi) are defined along all directions spanned
by hi, they can be found by incrementally traversing in a direction within hi orthogonal to

80

the directions that have already been traversed. That is, since the ancestor of a diamond
at the center of an i-cube of BF(hi) is the center of one of its facets, the traversal is only
along a single dimension.

6.1.5 Example
Consider the two dimensional diamond δ whose central vertex vc has coordinates (72, 20).
Using Equation (6.1) on the binary representation of vc, we can determine its scale γ, its
type τ, and its supercube origin s as follows:

vc =

[
72
20

]
=

[
100 10 002

001 01 002

]
=

[
100 10 00

001︸︷︷︸
s

01︸︷︷︸
τττ

00︸︷︷︸
γ

]
.

Thus, γ = 2, τ = (102, 012) = (2, 1) and s = (1002, 0012) = (4, 1). Since only one of
the bits in τ2 is zero, δ is a 1-diamond. Also, we can scale s to obtain the location of its
supercube’s origin within the grid as (4, 1) · 24 = (64, 16)

The vertices of δ’s spine ψ = (v0, vk) can be determined using Equation (6.2) as
~u = (0,−1). This vector points down the y-axis, thus, we can find the coordinates of
its spine vertices v0 and vk by subtracting, and adding, respectively, the scaled spine
orientation vector ~u to vc:

v0 = vc − 2γ · ~u = (72, 20) − 4 · (0,−1)) = (72, 24).

By adding the scaled offset ~u to vc, we obtain, vk = (72, 16).
Since δ is a 1-diamond, both its Kuhn and fully-subdivided components are 1-

dimensional. From the rightmost bits of τ, we can determine that its Kuhn component hk

is aligned with the y axis and its fully-subdivided component is aligned with the x axis
(see Figure 6.2). Thus, for example, we can use Equation (6.5) to find the central vertex
of its parent δp (in the negative x direction) at unscaled offset ~f = (−1, 0). We first scale ~f
by 2γ and then add the result to vc, so

vc(δp) = (72, 20) + 22 × (−1, 0) = (68, 20).

Figure 4.16 illustrates the components of all diamond classes up to dimension d = 4.
Each cell corresponds to a diamond δ of class i (columns) in dimension d (rows). The top
hypercube in each cell is a Kuhn subdivided (d − i)-cube containing the oriented spine,
whose vertices are colored black and gray, respectively, and the children, whose central
vertices (blue) are located at the center of its facets, at an offset ~f = ±e j, in all coordinates
that τ2

j = 1. The bottom hypercube in each cell is the boundary of a fully subdivided
i-cube. The central vertices of the parents (red) of δ are located at the center of its facets
at offset ~f = ±e j, in all coordinates that τ2

j = 0. The two hypercubes intersect at their
midpoints.

81

(-4,0)(-4,0)(-4,0)(-4,0)(-4,0)(-4,0) (4,0)(4,0)(4,0)(4,0)(4,0)(4,0)
(72,20)(72,20)

Figure 6.2: The vertices, parents and children of a diamond δ are located at scaled offsets from its
central vertex. These offsets are computed from the type τ and scale γ of δ. Here, the parents of a
diamond with central vertex (72,20) are located four units away on the x-axis.

6.1.6 Domain corners
Although they are not diamonds, we can apply Equation (6.1) to the 2d corner vertices
of the domain boundary. The lower left corner maps to a supercube with coordinates
0d whose scale is determined by the number of bits used by the machine to represent
coordinates (e.g. 32 for 4 byte integers). The remaining 2d − 1 corners map to a supercube
at location (0, 0) at a scale of LevelMax + 1.

6.2 Encoding supercubes

Since one of the primary applications of supercubes is to efficiently encode information
about a subset of the entities of an RSB hierarchy, supercubes require some form of
bookkeeping to index their encoded entities.

For example, when encoding a supercube’s diamonds, edges or vertices (edge mid-
points), a simple approach would be to encode this data as an array with one entry for
each of the 4d − 2d possible entities in the supercube. The data associated with each
entity can then be indexed by its type τ, and unencoded entities can be marked in place as
missing. However, this can waste a considerable amount of storage for supercubes with
many unencoded entities. We refer to this approach as array-based supercube indexing.

On the other extreme, if we expect a low occupancy rate, we can use a map data
structure (a tree or a hash map) to index the encoded entities. This requires lg(

⌈
4d − 2d

⌉
) ≈

2 · d bits of indexing data per encoded entity. We refer to this approach as map-based
supercube indexing.

A more efficient approach for static representations in relatively low dimensional
domains, in which we expect a moderate number of entities to be encoded can be obtained
by indexing the encoded entities using a bitflag of 4d − 2d bits (e.g. 2 bytes in 2D, 7 bytes
in 3D) along with a corresponding array with storage only for the encoded entities. The
data associated with a entities with associated type τ can then be indexed in the array

82

by the prefix sum of τ’s position in the bitflag, i.e. since each set bit for positions before
τ in the bitflag correspond to occupied locations, and each unset bit corresponds to an
unoccupied location, the position of τ’s data is in the position corresponding to its prefix
sum in the bitflag. Since prefix sum computations can be performed efficiently in hardware,
the processing overhead of this representation compared to that of the simpler encoding
above is negligible. Each supercube in this representation incurs a fixed storage overhead,
regardless of the number of entities encoded. Thus, the overhead of this representation is
reduced as the average number of encoded entities per supercube increases. We refer to
this approach as bitflag-based supercube indexing.

Since this bitflag representation requires a reorganization of the array data every
time a diamond is added or removed, we typically use the array representation during the
dynamic operations (such as initial generation), and convert to the bitflag representation
when the values become static.

6.2.1 Encoding collections of supercubes
We observe that within a given level of resolution `, supercubes can be uniquely indexed
by their origin. However, supercubes from different levels can map to the same origin (see
Figure 5.4).

We propose a two step access structure, where supercubes are first indexed by their
level of resolution, and then by their origin. This also enables the level ` of a supercube to
be implicitly encoded within the access structure.

The encoded supercubes at a given level of resolution ` belong to a uniform grid
that has been scaled by a factor of 2γ+2. Thus, depending on the data distribution, we have
several options for access structures to the supercubes. When the majority of the data
within a given level is present, the supercubes can be indexed using a full array. However,
most of the time, this will not be the case, and we can organize the supercubes into an
auxiliary data structure, such as a B-tree (for efficient out-of-core access) or a hash table
(for O(1) in-core access).

Thus, the data associated with a diamond δ (or its spine ψ or midpoint vc) with
supercube origin s, type τ and scale γ can be accessed in three steps. First, the set of
supercubes at level ` = N − (γ + 2) is located. Next, the supercube s within this set is
found. Finally, the data at location τ within s is found using the internal map of s.

6.3 Encoding RSB meshes

Recall from Section 4.6 that variable-resolution simplicial meshes (not necessarily con-
forming) are extracted from an RSB hierarchy using an adaptive refinement process, while
variable-resolution simplicial complexes are extracted from an RSB hierarchy in a se-
lective refinement process. The former corresponds to a closed set of refinements with
respect to the simplex bisection operation, while the latter corresponds to a closed set of
refinements with respect to the diamond dependency relation. In either event, the current
RSB mesh Σ corresponds to the active front of the query that is closed with respect to the
given relation.

83

To ensure that extracted meshes do not contain cracks, selective refinement requires
all of a diamond δ’s simplices to be present in the current mesh before δ can subdivide, i.e.
delta must be complete. Although, in the worst case, this requirement can trigger subdivi-
sions recursively up to the root of the hierarchy, the cost of such non-local subdivisions is
amortized over the set of elements in the local neighborhood. Consequently, an efficient
implementation of selective refinement requires fast access to the simplices or diamonds
in the active front as well as their ancestors and descendants.

Below, we first describe the pointerless simplex-based representations for RSB
meshes. We then introduce our pointerless diamond-based approach, and finally, our
pointerless supercube-based approach for diamond meshes.

6.3.1 Simplex-based representation
Pointerless encodings for a simplex-based simplicial complex Σσ extracted from a forest
of simplices typically use location codes to index the encoded simplices, but vary in
their adaptation of 2d-tree location codes [Gar82a, Gar82b, Sch92, Sam06] to nested RSB
meshes.

The bintree location code [EKT01, LDS01, LDS04] for a simplex σ at depth m is
encoded as the index ip ∈ [0, d!) of the bintree containing σ followed by an m-bit binary
string indicating the traversal path from the root of bintree ip to σ. Each such simplex
can be indexed using (m +

⌈
lg(d!)

⌉
) bits. Note that, in this encoding, the vertices of a

simplex are not stored, and can be determined from those of its bintree root in O(m) time
by descending the tree.

Alternatively, the subtree location codes [Heb98,Heb94,Pas00,AM07] are based on
the simplex encoding scheme for supercubes outlined in Section 5.2 (see Figure 5.7). A
simplex σ at depth m = d ·`+i requires an encoding for its reflection number ir ∈ [0, 2d), its
permutation number ip ∈ [0, d!) and its descendant number id ∈ [0, 2d − 1), in addition to
the path in the 2d-tree to its containing supercube, requiring `σ = O(d · `) bits. The subtree
location code for an RSB simplex σ at level ` can be encoded using (d · `+ d · 2 +

⌈
lg(d!)

⌉
)

bits per simplex in the mesh,
By substituting the level ` and class i for the depth m of the simplex, i.e. m = d · `+ i,

we observe that both types of location codes have the same complexity O(d · ` +
⌈
lg(d!)

⌉
).

Furthermore, by substituting the maximum level of resolution N for `, and using the
identity lg(n!) = Θ(n lg n) [CLRS01], we can determine the space complexity of simplex-
based location codes to be O(dN + d lg d) bits.

Additional information can also be required for efficient (i.e. constant time) neighbor
finding. For example, in [LDS01, LDS04], an additional 1 byte neighbor mask is required
to efficiently determine the appropriate bisection-edge neighbors of a simplex.

An advantage of subtree location codes over bintree location codes is that the ver-
tices of a simplex can be directly computed without requiring a tree traversal [Heb94,
AM07].

Besides the storage savings achieved by diamond-based encodings, the simplex-
based encodings cannot efficiently cache the status of its subdivided neighbors, and thus
each simplex bisection necessarily requires O(d!) neighbor-finding operations before its
O(d!) bisections.

84

6.3.2 Diamond-based representation
The encoding presented in Section 6.1 leads to an efficient pointerless representation for a
diamond-based simplicial complex Σd extracted from a hierarchy of diamonds. Σd can be
encoded as a collection of diamonds, each of which contains a set of d-simplices, such that,
the collection of simplices from all diamonds in Σd forms a simplicial complex covering
the domain Ω. Since we can reconstruct the location of all vertices, simplices, parents and
children of a diamond δ from the coordinates of its central vertex, each diamond can be
entirely indexed by the d coordinates of its central vertex. Thus, encoding the coordinates
of a diamond’s central vertex in a hierarchy with maximum level of resolution N, requires
d · N bits.

In general, not all d-simplices of a diamond will belong to the complex Σ (see
Figure 6.3a, where, e.g., the blue diamonds contain only one of their two triangles). Thus,
each diamond δ requires some bookkeeping to track the set of its d-simplices belonging
to the complex Σd. However, as observed in Section 4.4.3, a diamond’s d-simplices are
generated concurrently during the during the subdivision of a single parent of δ as a
parent-child duet. Thus, a single bit is sufficient to track the presence or absence of each
parent-child duet within δ and, consequently, 2 · d bits are sufficient to track all O(d!)
d-simplices of diamond δ ∈ Σd.

An advantage of the correspondence between parents and duets is that, when a dia-
mond contains all of its duets, it is complete, and can refine. Thus, the O(d) bookkeeping
bits of a diamond simultaneously cache the subdivision status of each parent of δ. This
can be used to further accelerate diamond refinement since it can reduce the number of
required spatial accesses.

As a consequence, the cost of encoding diamonds in a diamond-based simplicial
complex scales linearly with respect to the dimension, even though the number of sim-
plices scales factorially with respect to the dimension.

The cost of encoding a diamond in this representation is: (d · N + d · 2) bits per
diamond in the mesh.

A straightforward representation for encoding an active front utilizes a hash table
of diamonds. Each diamond δ is indexed by its central vertex vc, and contains a set of
bitflags tracking its subdivided parents as well as any additional information that must be
encoded for the diamond.

In 2D, if each coordinate can be encoded in 15 bits, diamonds can be encoded using
4 bytes of overhead. In 3D, this representation requires 7 bytes of overhead for each
encoded diamond: 6 bytes for the coordinates of its central vertex and one additional byte
of bookkeeping.

6.3.3 Supercube-based representation
We can encode an RSB mesh Σs generated by selective refinement in terms of supercubes
as well. There is a considerable amount of coherence among the simplices in Σ that a
simplex-based or diamond-based representation of an active front cannot exploit. Due to
the RSB rule, neighboring simplices in Σ can differ by at most one level of refinement, so
the presence in Σ of a simplex σ from diamond δ often indicates the presence of simplices

85

(a) (b) (c)

Figure 6.3: (a) A portion of a conforming RSB mesh Σ (in 2D). (b) Highlighted triangles from Σ

map to triangles in the supercube s, while gray triangles map to other supercubes. (c) The set of
all triangles (tetrahedra in 3D) in a supercube overlap.

from neighboring diamonds in the hierarchy. We therefore propose a supercube-based
representation Σs for simplicial complexes extracted from a hierarchy of diamonds.

Since we are only considering the cost of encoding the presence or absence of
simplices in a conforming mesh, our encoding can use a bitflag-based supercube represen-
tation on the 2d(2d − 1)d supercube parents. In addition, we require d · N bits to encode
the origin of each supercube. Thus the cost of this representation is: d · N + 2d(2d − 1)d
bits per supercube in the active front.

Assuming that each coordinate requires 2 bytes, then in 2D, each supercube in Σs

requires 7 bytes: 3 bytes to represent the bitflags (e.g. 1 bit for each of the 24 possible
duets in the supercube) in addition to the 4 bytes for the coordinates of its origin.

Alternatively, in 3D, each supercube in Σ requires 27 bytes: 21 bytes to represent
the bitflags (e.g. 1 bit for each of the 168 possible duets in the supercube) in addition to
the 6 bytes for the coordinates of its origin.

Note, however, that when considered collectively, the duets in a supercube overlap
(see Figure 6.3c for an illustration in 2D), but simplices in a simplicial complex cannot
overlap. Due to the containment relation among the simplices in the hierarchy, the presence
of a simplex σ in Σ precludes the presence of its parent simplex as well as both of its
children simplices from Σ. Thus, in practice, a supercube in Σ contains significantly fewer
than the 2d(2d − 1)d possible duets (see Figure 6.3b, where the 2D supercube contains 7
of the 24 possible triangles).

86

Chapter 7

Diamond-based multiresolution scalar fields

One of the primary applications of diamond hierarchies has been as a multiresolution
model for scalar fields such as terrain and volumetric datasets defined at the vertices of a
regularly sampled rectilinear grid. We call this model a Diamond-based Multiresolution
Sscalar Field (DMSF).

7.1 DMSF Model

A hierarchy of diamonds is the basis for a multiresolution model of a scalar field. In the
case of a DMSF, the base mesh is a coarse RSB mesh and the modifications correspond
to the diamond subdivisions. Since each diamond has a one-to-one correspondence with
its central vertex, the vertices are ordered according to the dependency relation of a
hierarchy of diamonds ∆. Thus, the spatial decomposition and dependency relation of a
DMSF are obtained from the implicit relationships among the diamonds in ∆, and only
the modifications need to be explicitly encoded.

The minimal information encoded in a diamond δ is given by the scalar value F(vc),
associated with the central vertex vc of δ. In addition to encoding F(vc), it is often useful
to encode aggregate information about the field values within the domain of δ, which can
be used to accelerate mesh extraction. This typically includes an approximation error for
the diamond to guide the refinement, as well as the range of values within the domain of
δ. which can be used to cull irrelevant regions during field-based queries [WVG92]. The
field gradient can also be maintained to accelerate visualization and analysis of the dataset.
All such information is associated with a diamond, or its central vertex, and thus a DMSF
can be efficiently encoded as a d-dimensional array indexed by vc.

7.1.1 Generating a DMSF
To generate the model, we need to find the approximation error for each diamond δ ∈ ∆.

The error ε(δ) associated with diamond δ encodes the maximum approximation
error for any point within the domain of δ, i.e.,

ε(δ) = Max
p∈δ

(ε(p)), (7.1)

where ε(p) =
∣∣∣F(p) − F̂(p)

∣∣∣ is the absolute difference between the field value at point p
and the approximated value obtained through barycentric interpolation of the field values
at the vertices of δ.

The points of a diamond δ can be efficiently enumerated using a recursive scheme
based on [MDM04], where, in 3D, each tetrahedron is split into triangular slices that are

87

aligned with a coordinate plane, and each triangle is in turn sliced into axis aligned line
segments.

The final component in generating a DMSF relates to enumerating the diamonds. A
straightforward approach is to perform a top-down breath first enumeration of the DAG.
However, this approach requires an amount of memory proportional to the number of
diamonds at the current level. Since this roughly doubles with each increasing subdivision
level, this method can exhaust the memory store or cause thrashing when processing
deeper levels of the hierarchy.

We use supercubes as an algorithmic primitive to directly enumerate all diamonds
on a level by level basis. Since the origins of supercubes at level ` of the hierarchy
coincide with the vertices of a scaled regular grid, these points can be easily generated
without incurring any memory overhead. Similarly, the diamonds within each supercube
can be enumerated using successive diamond types. Thus, this approach can be run on
the levels of the hierarchy in any order, i.e. top-down manner from the root of ∆, bottom-
up from the leaves of ∆, or in an arbitrary order. As such, this method admits highly
parallel implementations for processing each level of the hierarchy, as well as individual
supercubes, diamonds or simplices within those supercubes.

7.2 Full DMSF

A full DMSF, which we denote as ∆ f , contains diamonds corresponding to all vertices of a
scalar field of resolution (2N + 1)d. The base mesh of ∆ f is a single 0-diamond δ0 covering
the entire hypercubic domain Ω. The 2d corner points of Ω (i.e. the vertices of δ0) are the
only points within ∆ f that do not correspond to diamonds.

A full DMSF ∆ f can be encoded as a d-dimensional array whose entries represent
the information associated with each diamond and can be indexed using a C-style row
major ordering, or a more complicated indexing scheme such as a hierarchical space-filling
curve [PF01, GDL+02].

Alternatively, ∆ f can be encoded by a supercube-based representation without in-
curring any storage overhead. Since all vertices of ∆ f are present, the internal map within
each supercube can be encoded in an array with 4d − 2d elements. Furthermore, since all
supercubes at each level of resolution are present, each level can be encoded as an array of
supercubes, indexed by their origin. The advantage of this representation is that diamonds
are clustered near their spatial and hierarchical neighbors. Thus, these coherent diamonds
can be loaded in the cache at the same time.

7.3 Partial DMSF

However, when some of the vertices of a full DMSF ∆ f are unavailable or irrelevant for an
intended application, a partial DMSF, which we denote as ∆p, can be much more efficient
to encode than ∆ f .

The base mesh of a partial DMSF ∆p is a coarse RSB mesh consisting of diamonds
from a corresponding hierarchy of diamonds ∆, whose vertices are tagged with values
from the scalar field F. The diamonds in ∆p are a subset of the diamonds of ∆ f subject to

88

the transitive closure constraint that if a diamond δ belongs to ∆p then all ancestors of δ
belong to ∆p as well. Finally, the dependency relation of ∆p is the dependency relation of
∆ restricted to the diamonds in ∆p.

Such sparse representations are important, for example, when not all the data in a
volume data set are available and instead of having a full grid, we have the data points
at a subset of the vertices of the domain, or when the portion of data of interest is small
compared to the full dataset, as, for instance, when only certain portions of the dataset are
available at a higher resolution. Furthermore, when the dataset is locally oversampled, e.g.,
samples covering a large body of water in a terrain dataset, we can accurately interpolate
these values from samples at a higher resolution. Figure 7.1 shows a zero approximation
error sparse representation of a 6000×4800 sample tile from the gtopo30 dataset [Sur]. For
this dataset, a partial DMSF requires less than 1/6 of the original samples since flat regions
do not need to be subdivided to the highest resolution to obtain an accurate approximation.

(a) GTOPO30 Tile (b) Partial DMSF

Figure 7.1: Terrains covering large flat regions such as oceans are oversampled by a regular grid
(a). A zero error sparse representation of this terrain (b) requires less than 1/6 of the samples from
the original dataset. Image (a) courtesy of USGS [Sur].

The main challenge in representing such sparse datasets relates to the efficient en-
coding of the coordinates of its diamonds. Whereas the coordinates of diamonds in a full
DMSF ∆ f can be implicitly determined e.g. by representing ∆ f as an array, such a repre-
sentation is impractical for a partial hierarchy ∆p where much of the data is non-existent
or redundant.

A straightforward representation for ∆p is to explicitly encode the d coordinates
of each diamond’s central vertex in addition to the scalar field data. We denote such a
diamond-based partial DMSF as ∆d.

89

However, due to the transitive closure constraint of the partial DMSF model, the en-
coded diamonds exhibit both a spatial and a hierarchical coherence which can be exploited
by clustering the diamonds into supercubes. We denote such a supercube-based partial
DMSF as ∆s. Since ∆p is static, and typically sparse with respect to a corresponding full
DMSF ∆ f we can represent the internal map within supercubes using the bitflag-based
encoding of Section 6.2. The supercubes at each level are indexed by the coordinates of
their origin.

7.4 Theoretical evaluation

In this section, we consider when it is appropriate to represent a DMSF using a partial
representation. We measure this in terms of the density of the dataset, i.e. the percentage
of samples from a full DMSF that are retained in the partial representation. Next, we
analyze when supercube-based representations of a partial DMSF are appropriate. For
this, we consider the concentration of the clustering, that is, the average number of dia-
monds encoded per supercube. A supercube-based representation for a partial hierarchy
of diamonds provides the maximum benefit when the desired dataset is sparse with respect
to the full dataset and concentrated with respect to the supercube clustering.

We begin by introducing some notation. Let ∆ f denote the full DMSF, containing
n f = (2N + 1)d diamonds and let ∆p denote the desired partial DMSF, containing np

diamonds. ∆p can be encoded using a diamond-based partial DMSF ∆d or a supercube-
based representation ∆s, whose np diamonds are clustered into ns supercubes. Finally, let
bδ denote the number of bytes required to encode the data associated with each diamond,
bv the number of bytes required to encode the coordinates of the central vertex of each
diamond and bs the number of bytes required to encode the indexing and bookkeeping
information associated with each supercube.

We compare the costs of these representations in Table 7.1 with respect to an ideal
representation ∆p, which only represents the np diamonds. This representation is not
practical since it has no way of indexing the encoded diamonds, but we use it to compare
the remaining representations. ∆ f must encode all n f samples but the indexing of its
elements is implicit. However, it encodes n f − np extraneous diamonds. In contrast, ∆d

encodes only the np diamonds but must also explicitly encode the spatial coordinates of
each diamond. Finally, the overhead in ∆s can be attributed entirely to the ns supercubes.

Using this notation, we define the density D = np/n f of the dataset as the ratio of
retained diamonds in ∆p compared to ∆ f . Also, we define the concentration C = np/ns of
the dataset as the average number of diamonds per supercube. We note that C ∈ [1, 4d−2d]
since we only encode supercubes that contain at least one diamond.

By rearranging the equations in Table 7.1 and substituting terms for D and C, we
can compare the representations.

The supercube-based partial DMSF ∆s is more compact than the full DMSF ∆ f

when
D <

bδ
bδ + (bs/C)

. (7.2)

90

Table 7.1: Storage requirements and overhead, in bytes, for the full DMSF ∆ f containing n f sam-
ples and the partial DMSFs ∆p containing np samples – the diamond-based ∆d and the supercube-
based ∆s. Costs and overhead are with respect to the number of bytes required to encode the
coordinates of vertices (bv), the data associated with each sample (bδ), and for indexing and book-
keeping of supercubes (bs). Overhead is relative to the theoretically optimal ∆p.

DMSF Representation Storage cost Overhead

∆p np · bδ 0
∆ f n f · bδ (n f − np) · bδ
∆d np · bδ + np · bv np · bv

∆s np · bδ + ns · bs ns · bs

Table 7.2: Comparison between a full DMSF ∆ f and a supercube-based partial DMSF ∆s in terms
of density D = np/nδ and supercube concentration C = nd/ns for our terrain DMSF model, where
bδ = 4, bv = 4 and bs = 6. Values indicate maximum density for which the cost of ∆s is less than
that of ∆ f .

C 1 2 3 4 5 6 7 8 9 10 11 12
4

(4+6/C) 40% 57% 67% 73% 77% 80% 82% 84% 86% 87% 88% 89%

The diamond-based partial DMSF ∆d is more compact than the full DMSF ∆ f when

D <
bδ

bδ + bv
. (7.3)

Finally, the supercube-based partial DMSF ∆s is more compact than the diamond-based
partial DMSF ∆d when

C > bs/bv. (7.4)

However, since all representations must encode the np diamonds, a more relevant measure
of the effectiveness of each representation is related to its overhead with respect to ∆p

(third column of Table 7.1). While ∆d has a constant overhead of bv bytes per diamond,
the overhead in ∆s is related to C as (bs/C) bytes per diamond.

As a first example, consider a terrain dataset where each elevation is encoded using
2 bytes and the approximation error is also encoded using 2 bytes. Then bδ = 4 bytes.
Also, assume that coordinates are encoded using unsigned shorts, so bv = 4 bytes. Finally,
let bs = 6 bytes consisting of: the origin of the supercube (4 bytes) and 2 bytes for the 12
bitflags to indicate encoded diamonds. Then, in terms of density and concentration, ∆s is
more compact than ∆ f and ∆d, respectively, when D < 4

(4+6/C) , and when C > 6/4 = 1.5.
Table 7.2 lists the maximum density D at which ∆s is more compact than ∆ f for integer
values of C.

For three-dimensional volumetric datasets, let the size of each refinement be bδ = 4
bytes as in [GDL+02]. Further, assume vertices are encoded in 6 bytes as three unsigned
shorts, then bv = 6 bytes. Finally, let bs = 17 bytes consisting of: the origin of the
supercube (6 bytes), bitflags to indicate the encoded diamonds (7 bytes) and a pointer to

91

an array containing the data (4 bytes). Then, in terms of density and concentration, ∆s is
more compact than ∆ f and ∆d, respectively, when D < 4

(4+17/C) , and when C > 17/6. The
curves in Figure 7.2 separate the half-spaces in which ∆s is more compact than ∆ f by the
constant to its right. For example, when C = 17 and D = .2, ∆ f requires four times as
much space to encode as ∆s.

1.5 x

1 x

2 x

3 x
4 x
5 x

10 x
20 x

100 x

D
en

si
ty

Concentration

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31 36 41 46 51 56

Figure 7.2: Comparison between storage costs of a full DMSF ∆ f and a supercube-based partial
DMSF ∆s in terms of density D and concentration C for bδ = 4, bv = 6 and bs = 17. Curves
highlight the factor by which ∆s is more compact than ∆ f .

7.5 Applications

In this section, we discuss several applications in which it can be beneficial to generate a
partial DMSF ∆p from a full DMSF ∆ f .

7.5.1 Error-based generation
As a first application, consider a partial DMSF ∆p generated from a full DMSF ∆ f by
retaining all diamonds whose error is greater than a given threshold ε. When ε = 0, this
generates a lossless encoding of ∆ f , i.e. ∆ f can be reconstructed from ∆p without any
error.

Since ∆p is a partial DMSF, it must also retain all ancestors of the retained samples.
This ensures the transitive closure of the diamond dependency relation (as described in
Section 7.3).

Due to the transitive closure requirement, and the definition of the error metric there
is a high degree of hierarchical coherence in addition to the spatial coherence among
samples associated with a given supercube. Namely, if a diamond is required to satisfy
a given selection criterion, it is likely that its neighbors, parents and children are also

92

Table 7.3: Number of supercubes (ns) and diamonds (np) as well as disk size (in KB = 1024
Bytes or MB = 10242 Bytes) for supercube-based partial DMSFs extracted from full DMSF terrain
datasets with different uniform errors. Note that the values for Puget Sound 4k dataset for 0% error
are actually for 0.03% error rather than 0% error.

Dataset Dims
10% Error 1% Error 0.1% Error 0% Error

ns np size ns np size ns np size ns np size

San Bernadino 1282 222 867 4.7K 1.2K 8K 39K 1.4K 14K 63K 1.4K 16K 71 K
Devil’s Peak 165×301 275 1.5K 7.3K 2.8K 19K 89K 3.3K 32K 145K 3.3K 32K 145K

Grand Canyon 1280×640 3.5K 16K 83K 28K 172K 836K 62K 556K 2.5M 62K 556K 2.5M
Mt. Marcy 12012 1.3K 6K 32K 13K 68K 340K 63K 426K 2M 101K 939K 4.2M

Puget Sound 1k 10252 710 3.3K 17K 41K 219K 1.1M 82K 761K 3.4M 86K 1M 4.3M
Puget Sound 4k 40972 754 3.5K 18K 75K 354K 1.8M 880K 5.5M 26M 1.2M 9.7M 44M

Australia 4800×6000 18K 99K 490K 20.1K 110K 546K 50.1K 262K 1.3M 528K 4.78M 21M

necessary. The non-full supercubes are typically those that are close to the boundary of
the domain or those containing leaf nodes.

7.5.1.1 Terrain modeling

An important example in the field of GIS, is the use of a supercube-based partial DMSF
for terrain datasets. A partial DMSF provides a solution for a long-standing problem
of representing subsets of a regular grid. For example, elevation data for surfaces and
coastlines are required to be sampled at a high resolution, but regions covered by water
are considered to be flat and are often highly oversampled. This is especially relevant for
global datasets since approximately 70% of the earth’s surface is covered by water.

We performed our experiments on several regular datasets, including Digital Eleva-
tion Models (DEM)s of Mt. Marcy, the Grand Canyon, Devils Peak, San Bernardino, two
versions of the Puget Sound at different resolutions, and a tile of the gTopo30 covering
a portion of Australia (see Figure 7.1). Datasets whose dimensions are not (2N + 1)2

were embedded into the smallest containing virtual grid of dimensions (2N + 1)2. All
experiments were run on a 2 GHz Intel Core 2 Duo laptop with 4 GB of RAM.

Table 7.3 summarizes the sizes of partial DMSFs extracted from the dataset testbed
with a range of uniform errors.

Figure 7.3 shows the average density of the various datasets from Table 7.3. As can
be seen from the table, when encoding a supercube-based partial DMSFs of uniform error
less than one percent, there are between 5 and 12 diamonds per supercube on average, and
for errors less than 0.1 percent, the average concentration is between 9 and 11 diamonds
for most datasets. Note also, that the average density of supercubes increases as the error
threshold decreases.

Since the overhead per supercube bs is 6 bytes, our supercube based partial DMSF
representation has an overhead of less than 1 byte per sample when the average supercube
density is greater than 6, an approaches 0.5 bytes per vertex as the average density ap-
proaches 12. Compared to the average of 3 Bytes of overhead per vertex in [Ger03a],
our method is 3-6 times more space efficient. Furthermore, the stack-based method
of [Ger03a] does not provide random access to its vertices and requires up to O(√np)
extra storage in memory.

93

4

5

6

7

8

9

10

11

12

10% 1% 0.1% 0.03% 0.01% 0%

San Bern

Devil's Peak

Grand Canyon

Marcy

Puget 1k

Puget 4k

Australia

Figure 7.3: Average density of supercubes (vertical axis) with uniform error (horizontal axis).
Derived from Table 7.3 as (nd/ns).

7.5.1.2 Modeling volume data

Next, we consider the problem of modeling three-dimensional volume datasets. We gen-
erated lossless (ε = 0%) and lossy (ε = 1%) partial DMSFs from a testbed of volumetric
datasets of resolution up to 5123 from the Volume Visualization repository [Vol].

Table 7.4 lists the number of elements, and storage costs in a zero-error partial
DMSF ∆p for the various datasets as well as their density D and concentration C. These
datasets are plotted on Figure 7.4 for ε = 0% (red) and ε = 1% (orange). We observe
that some datasets, such as Fuel and Aneurysm are extremely sparse, and achieve a 12.2
times and 17.3 times reduction in storage requirements, respectively, compared to the full
DMSF dataset ∆ f . In contrast, other datasets such as Plasma and Buckyball are quite
dense, and thus, a partial representation does not yield a significant savings compared to
∆ f . However, even for these datasets, the size of ∆s is close to that of ∆ f (requiring 4%
more and 19% less space, respectively), whereas ∆d is much larger (requiring 2.4 times
and 1.9 times more space, respectively). Most of the remaining datasets achieve around
three times savings for ∆s compared to ∆ f (see penultimate column in Table 7.4).

Since bv (6 bytes) is 1.5 times as large as bδ (4 bytes), the overhead associated with
∆d compared to the ideal representation ∆p is 150%. In contrast, the overhead of ∆s (i.e.
∆s/∆p) is related to the concentration of the supercube clustering, and averages around
12% across all datasets. Thus, the 2.25 times savings achieved by ∆s compared to ∆d is
entirely due to the difference in geometric overhead.

7.5.2 Range-based generation
Partial DMSFs can also be used to reduce the storage requirements and mesh extraction
times required for isosurface extraction when the (set of) isovalue(s) can be determined
in advance. In isosurfacing applications, the active cells, i.e. those that intersect the
isosurface, typically occupy a sparse but spatially widespread subset of the domain. Since
isosurfaces are continuous, there is a great deal of spatial and hierarchical coherence
among the active cells.

We can thus generate an isovalue-based partial DMSF ∆p from ∆ f , where all dia-
monds whose range intersects the predetermined isovalue(s) are retained, while those not

94

Table 7.4: DMSFs generated based on uniform field error with ε = 0 from volumetric datasets
with maximum level of resolution N, containing (2N + 1)3 samples. File sizes for the full DMSF
(∆ f), the diamond-based partial DMSF (∆d) and the supercube-based partial DMSF (∆s) are listed
in MB (1 MB = 10242 B). The density (D = np/n f) values are in the range [0, 1] and concentration
(C = np/ns) values are in the range [1, 56]. All datasets are plotted on Figure 7.4 (red circles).

Dataset N n f np ns D C ∆ f ∆d ∆s ∆ f /∆s ∆s/∆p

Fuel 6 275 K 19.9 K 620 .07 32.2 1.05 .19 .09 12.2 x 1.10 x
Neghip 6 275 K 129 K 3.46 K .47 37.2 1.05 1.23 .55 1.91 x 1.09 x
Plasma 6 275 K 265 K 4.98 K .97 53.2 1.05 2.53 1.09 .96 x 1.06 x
Hydrogen 7 2.15 M 545 K 16.0 K .25 34.0 8.19 5.19 2.34 3.50 x 1.10 x
Buckyball 7 2.15 M 1.65 M 38.3 K .77 43.0 8.19 15.7 6.90 1.19 x 1.08 x
Aneurysm 8 17.0 M 791 K 44.6 K .05 17.7 64.8 7.54 3.74 17.3 x 1.18 x
Tooth 8 17.0 M 5.23 M 104 K .31 50.1 64.8 49.9 21.7 2.99 x 1.06 x
Engine 8 17.0 M 5.34 M 112 K .31 47.6 64.8 50.9 22.2 2.92 x 1.07 x
Head 8 17.0 M 5.47 M 139 K .32 39.4 64.8 52.1 23,1 2.80 x 1.08 x
Bonsai 8 17.0 M 5.00 M 147 K .29 34.1 64.8 47.7 21.5 3.02 x 1.10 x
Foot 8 17.0 M 5.90 M 151 K .35 39.2 64.8 56.3 25.0 2.59 x 1.08 x

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 6 11 16 21 26 31 36 41 46 51 56

D
en

si
ty

Concentration

> 1% Error
> 0 % Error

1.5 x

1 x

2 x

3 x
4 x
5 x

10 x
20 x

100 x

Figure 7.4: Density and concentration of partial DMSF datasets of Table 7.4 extracted from a
complete DMSF with uniform error greater than 0% (red) and 1% (orange). Gray curves indicate
the factor by which a supercube-based partial DMSF ∆s is more compact than a full DMSF ∆ f .

95

intersecting the isovalue(s) are only retained if they are ancestors of the required diamonds.
∆p can then be queried using selective refinement to extract adaptive simplicial complexes.
This model thus trades fidelity in regions away from the desired isosurface for storage
and extraction efficiency of the desired isosurface(s). We present results on volumetric
datasets, but since contour plots are a common metaphor in GIS, a range-based DMSF
consisting of samples pertaining to a series of significant isocontours can be a useful
representation as well.

Table 7.5 lists the number of elements and the storage requirements for the three
DMSF representations for each isovalue-based volumetric dataset (the values of N and n f

can be found in Table 7.4). The density and concentration of these datasets are plotted in
Figure 7.5. We observe that these extracted partial DMSFs are indeed sparse with respect
to ∆ f , averaging around 5% of the samples and often much less. They are also quite
concentrated with respect to the supercube clustering, with an average concentration of
26 out of a possible 56 diamonds per supercube. Thus, supercube-based partial DMSFs
of these datasets require an average of 25 times less storage than their corresponding full
DMSFs. In fact, the largest dataset Xmas{868} (orange square in Figure 7.5) requires only
1.3% of the samples of ∆ f and is over 65 times more compact.

As in the error-based partial DMSFs, the supercube-based encodings are approxi-
mately 2.3 times smaller than a corresponding diamond-based DMSF, and have very low
overhead (around 13%) compared to the ideal representation ∆p.

We note that, when more than one isovalue is desired (as in the set of Engine datasets
on the bottom of Table 7.5, and the corresponding colored rhombuses in Figure 7.5), there
is also a significant amount of coherence among the active cells of distant isovalues
(e.g. κ = 58 and κ = 170). Thus, the supercube-based representation for the Engine
dataset with two isovalues, Engine{58,100}, requires only 15% more storage space than
either of the individual datasets Engine{58} or Engine{100}, and has a higher concentration
than either of them. This advantage is increased in Engine{58,100,170} as the samples from
a third isovalue are added, where the density only increases by 3% and the supercube
concentration increases by 0.8.

0%

5%

10%

15%

20%

1 6 11 16 21 26 31 36 41 46 51 56

D
en

si
ty

Concentration

5 x

10 x

20 x

100 x

Figure 7.5: Density and concentration of partial DMSF datasets of Table 7.5 containing all dia-
monds intersected by the specified isovalue(s).

96

Table 7.5: DMSFs generated based on specific isovalue(s) for three dimensional datasets. File
sizes for the full DMSF (∆ f), the diamond-based partial DMSF (∆d) and the supercube-based
partial DMSF (∆s) are listed in MB (1 MB = 10242 B). All datasets are plotted on Figure 7.5.

Dataset{Isovalue(s)} np ns D C ∆ f ∆d ∆s ∆ f /∆s ∆s/∆p

Fuel{7.2} 15.7 K 608 .057 25.8 1.05 .15 .07 15.1 x 1.13 x
Neghip{868} 39.5 K 1.57 K .144 25.2 1.05 .38 .18 5.95 x 1.13 x
Hydrogen{24} 63.1 K 2.42 K .029 26.1 8.19 .60 .028 29.3 x 1.12 x
Bucky{128} 2.59 K 9.94 K .121 26.1 8.19 2.47 1.15 7.12 x 1.12 x
Aneurysm{128} 255 K 12.3 K .015 20.8 64.8 2.43 1.17 55.3 x 1.16 x
Tooth{650} 1.87 K 7.27 K .011 25.7 64.8 1.78 .83 78.1 x 1.13 x
Bonsai{35} 1.35 M 48.8 K .008 27.7 64.8 12.9 5.94 10.9 x 1.12 x
Foot{23.5} 3.14 M 92.3 K .185 34.0 64.8 30.0 13.5 4.80 x 1.10 x
Head{58} 749 K 29.7 K .044 25.2 64.8 7.14 3.34 19.4 x 1.13 x
Xmas{868} 1.74 M 69.3 K .013 25.1 515 16.6 7.76 66.4 x 1.13 x

Engine{58} 937 K 33.7 K .055 27.8 64.8 8.94 3.12 15.7 x 1.12 x
Engine{100} 937 K 33.7 K .055 27.8 64.8 8.94 4.12 15.7 x 1.12 x
Engine{58,100} 1.08 M 35.8 K .064 30.2 64.8 10.3 4.70 13.8 x 1.11 x
Engine{58,100,170} 1.13 M 36.5 K .067 31.0 64.8 10.8 4.90 13.2 x 1.10 x

7.5.3 Region Of Interest-based generation
Partial DMSFs are suitable for representing datasets extracted from a full DMSF using
arbitrary selective refinement criteria. These include polygonal regions such as squares and
circles (see Figure 7.6) as well as polylines. Additional error functions include distance
or view dependent criteria as well as samples relevant to specific contour lines or ranges
of contour lines within the datasets.

7.5.4 Merging corresponding partial DMSFs
Another interesting means of generating partial DMSFs is to merge two existing partial
DMSFs, covering portions of the same domain and possibly at different resolutions. In
the latter case, corresponding samples do not necessarily map to the same coordinates, but
we assume that they correspond to the same regions of the domain.

We observe that the resolution of a dataset is a bottom-up distinction, that is, it is
determined by the minimum distance between samples. However, corresponding datasets
are aligned in a top-down rather than a bottom-up manner, i.e. their root diamonds cover
the same hypercubic domain. Thus, a reinterpretation of our supercube-based representa-
tion in a top-down manner would enable the alignment of datasets of different resolutions.
Since a diamond’s scale is a bottom-up characteristic and its level is a top-down charac-
teristic, this requires a method to represent supercubes by their level rather than by their
scale.

Recall that the supercube structure clusters together those diamonds whose coordi-
nates agree on all but two bits, i.e. the bits corresponding to their diamond type τ, and that

97

Figure 7.6: Circular region of interest (ROI) from Puget Sound 1k dataset. Values inside the ROI
have 0 error while those outside the ROI have an approximation error less than 10%. This partial
DMSF has 3600 supercubes with an average concentration of 10.3 diamonds per supercube.

all the bits to the right of these bits are zero. Consequently, the origin of a supercube s at
scale γ has at least γ + 2 trailing zeros in each of its coordinates, and s can be unscaled by
shifting its coordinates to the right by γ+2 bits. Unscaled supercube origins at a particular
level are thus a subset of the points of a regular grid.

Since the scale of a supercube is a function of the level of its diamonds as well as
the resolution of the dataset, i.e. LevelMax, a supercube based partial DMSF can store the
unscaled coordinates of the origins of its supercubes and rescale them at runtime. Let p
be the scaled coordinates of a supercube at scale γ whose unscaled origin is located at
unscaled point s. Then the central vertex vc of a diamond with type τ can be calculated
as: vc = s · 2γ+2 + τ · 2γ. Note that since we are scaling by a multiple of 2, this operation
can be efficiently executed using hardware bitshift operations. Supercubes can then be
partitioned by either their level or their scale, corresponding to top-down or bottom-up
representations, respectively.

Thus, aligning two top-down supercube based DMSFs is accomplished by simply
setting the maximum level of the lower resolution dataset to that of the higher resolution
dataset. Specifically, let A and B be two DMSFs where dataset A has a resolution of
(2  + 1)d and dataset B has a resolution of (2k + 1)d, such that  < k. Then LevelMax(A) is
 and LevelMax(B) is k. A top-down supercube based DMSF of dataset A can be aligned
with dataset B by simply increasing LevelMax(A) to k.

An advantage of this unscaled representation is that the dataset is no longer depen-
dent on the resolution of the original grid and can be dynamically rescaled. Furthermore,
this unscaled representation requires the same amount of storage as the scaled supercube
based DMSF representation. However, since this requires rescaling the supercubes at
runtime, the unscaled representation has a slight (but constant) computational overhead to

98

the scaled representation.

Example. As an example, consider a diamond in 2D with central vertex vc = (44, 108)
from a dataset of resolution (28 + 1)2 = 2572. Using the encoding of Section 6.1, we
find that its scale is 2, its type τ is (3, 3) and its scaled supercube origin is at (32, 96). To
unscale the supercube, we divide it by 2Scale(δ)+2 = 24 and obtain the point (2, 6). Since
the resolution of the grid is 28, the LevelMax is 8, and thus the supercube is at level
LevelMax − Scale(δ) = 8 − 4 = 4. To convert this to a diamond or supercube in a dataset
of resolution (210 + 1)2 = 10252, we observe that the scale of the supercube in the higher
resolution is 10 − 4 = 6. Consequently, the rescaled supercube needs to be scaled by a
factor of 26 and will be at location (2, 6) ∗ 26 = (128, 384).

After adding the scaled diamond type, the central vertex of δ is located at (176, 432),
and the scale of δ is 4. Notice that although the resolution of the dataset increased (by
a factor of 22 = 4), the level of the diamond as well as that of the supercube remained
constant, and the only change was in the value of LevelMax, which changed from 8 to 10.

Transitive closure of the dependency relation. When merging two corresponding
DMSFs, we typically need to insert additional vertices to maintain the transitive clo-
sure of the resultant DMSF. Each of these new vertices requires a scalar value as well as
an error value. For the scalar values, we can recursively interpolate the value from the two
vertices of its associated diamond’s spine. This is guaranteed to terminate at the domain
corners (i.e. the vertices of the root diamond), but will typically terminate much earlier.
Since we want to ensure that the diamonds from the new dataset are reached, we set the
error of the new points to the maximum possible error.

Due to the large number of shared ancestors within the DMSF, the number of
points necessary to ensure transitive closure is often quite small relative to the number of
diamonds being inserted, but depends on the location to which it is inserted. For example,
let ∆p be an empty two-dimensional DMSF with LevelMax = 30, e.g. its equivalent full
DMSF would have a resolution of (230 +1)2. Adding a 2x2 block of samples to ∆p requires
only a few hundred samples to maintain transitive closure, while adding a 10252 block
of highest resolution samples to ∆p has an overhead of less than 1%, e.g. whereas the
10252 block contains 1,050,625 samples, an empty partial DMSF of size (230 + 1)2 with
this block added has fewer than 1,060,000 diamonds. Furthermore, adding a 40972 block
from the same DMSF requires fewer than 0.1% additional samples to maintain transitive
closure.

We simulate a situation where a higher resolution component is available by using
two corresponding DEMs from the Puget Sound dataset, whose resolutions are 10252

and 40972, respectively. First, we extract a partial DMSF of uniform error less than 1%
from the Puget Sound 1k dataset (see Figure 7.7a). This DMSF has 82 K supercubes and
761 K diamonds (C = 9.3). Next, we merge it with a partial DMSF generated from the
Puget Sound 4K dataset using a square ROI of side length 580 samples (see Figure 7.7b).
This DMSF has 29 K supercubes and 341 K diamonds (C = 11.6). The combined partial
DMSF contains 108 K supercubes and 1.08 M diamonds (C = 9.95). The number of
shared samples between the two datasets is only 21 K or around 2% of the samples in the

99

resultant dataset. Figure 7.7 illustrates a terrain extracted from this DMSF.

(a) Puget Sound 1k at 1% error. (b) Puget Sound 4k with square ROI.

(c) Combination of Puget datasets (shaded) (d) Combination of Puget datasets (wire)

Figure 7.7: Planar projection of (a) the Puget sound 1k dataset with 1% error and (b) the Puget
sound 4k dataset with square ROI. (c,d) Merged datasets after upscaling the lower resolution
dataset. Shown without (c) and with (d) wireframe to highlight the size of the mesh elements.

7.6 Runtime performance

We can compare the runtime performance of the three DMSF representations, the full
DMSF ∆ f , the diamond-based partial DMSF ∆d and the supercube-based partial DMSF
∆s, by comparing the rates at which they can process diamonds during selective refinement
queries. Since an active front facilitates selective refinement, we evaluate the performance
of the two active front representations introduced in Section 6.3. Recall that the active
front of a selective refinement query corresponds to a simplicial complex current mesh Σ.
On a DMSF, Σ is a conforming RSB mesh. This mesh can be represented using a diamond-

100

Table 7.6: Selective refinement performance of the three DMSF representations using a diamond-
based active front representation Σd and a supercube-based active front representation Σs, in terms
of the minimum, maximum and average number of diamonds (in thousands) visited per second.

Diamond-Based (Σd) Supercube-Based (Σs) Σs/Σd

Min Max Average Min Max Average Average

∆ f 252 K/s 343 K/s 317 K/s 298 K/s 354 K/s 324 K/s 1.019 x
∆d 223 K/s 333 K/s 301 K/s 263 K/s 340 K/s 306 K/s 1.019 x
∆s 237 K/s 327 K/s 296 K/s 276 K/s 331 K/s 300 K/s 1.014 x

based representation, which we denote as Σd, or through a supercube-based representation
which we denote as Σs.

Since selective refinement queries depend on the specific selection criterion used, we
evaluate the performance of each structure in terms of the number of diamonds visited by
the selective refinement query per second. In Table 7.6, we present the aggregate results
over our testbed of volumetric datasets for an error-based isosurface extraction query
and note that we observed the same trends when using different queries, such as region
of interest and approximation error queries. The LOD criterion for this query selects
all diamonds with approximation error greater than some threshold ε and containing a
particular isovalue κ. As a partial DMSF for this query, we use the datasets generated in
Table 7.5.

For these experiments, we implemented ∆d using a hash table from the central
vertex of each diamond in ∆d to the data associated with it. This incurs a storage overhead
inversely proportional to the load factor of the hash table, i.e., the ratio of diamonds in ∆d

to buckets in the hash table. Across all datasets tested, we found the load factor to average
73.5% (with a standard deviation of 16%). Thus, the hash-indexed ∆d requires an average
memory overhead of 36% compared to the values listed in Table 7.5. Similarly, for ∆s, we
used a separate hash table for each level of supercubes, and indexed the data associated
with each supercube by its origin (as described in Section 6.2.1). We found the load factor
to average 75% (with a standard deviation of 11%) across the datasets, thus, requiring an
average memory overhead of 33% compared to the values listed in Table 7.5.

We evaluate the performance of the DMSF representations (i.e. the rows of Ta-
ble 7.6) by comparing the average number of diamonds processed per second. Recall that
due to the query type and the transitive closure of ∆d and ∆s, all three representations
process the same set of diamonds and yield the same result. We first observe that all three
representations yield similar performance results of about 300,000 diamonds per second.
∆ f is the fastest DMSF representation, since it can directly access its diamonds using the
array location of their central vertices. ∆d is approximately 5-6% slower than ∆ f , due to its
use of indirect hashing, while ∆s is around 7.5% slower than ∆ f . Thus, despite its required
extra processing, such as extracting the supercube origin and diamond type and the prefix
sum calculation, supercube-based ∆s’s performance is within 2% that of diamond-based
∆d.

Next, we evaluate the relative performance of the two active front representations Σs

and Σd by comparing columns 4 and 7 (Average) of Table 7.6. Thus, the supercube-based

101

active front representation Σs is, on average, 1-2% more efficient than the diamond-based
active front representation Σd. Although this is not a significant difference, we note that the
addition (removal) of any diamond to (from) Σd incurs a memory allocation (deallocation),
whereas, due to the supercube clustering, such allocations (deallocations) are rarer for Σs.

Finally, we evaluate the sizes of the two active front representations. Recall that the
supercube-based active front representation Σs requires 27 bytes overhead per supercube.
Over the entire test, Σs averaged 26.5 tetrahedra per supercube (with a standard deviation
of 3.1). Thus, the supercube-based active front Σs incurs an overhead of around 1 byte per
tetrahedron in the active front. In contrast, the diamond-based active front representation
Σd requires 7 bytes overhead per diamond. Over the entire test, Σd averaged 3.3 tetrahedra
per diamond (with a standard deviation of .55). Thus, the diamond-based active front
incurs an overhead of around 2.16 bytes per tetrahedron in the active front.

We implemented both Σs and Σd using hash tables, (analogously to our indexing
of the partial DMSFs above). Across all datasets, we achieved an average load factor
of 74% for Σd (with a standard deviation of 15%), and thus the hash-indexed Σd incured
a memory overhead of around 36%. The average load factor for Σs was 72% (with a
standard deviation of 11%), requiring an average overhead of 39%. Thus, a supercube-
based active front representation Σs can be used to extract an equivalent mesh from a
DMSF as a diamond-based representation Σd in slightly less time and using less than half
the storage.

Figure 7.8 illustrates the clustering of tetrahedra in a supercube-based active front
by the color of their isosurface triangles.

7.7 Discussion

We have introduced a dimension-independent compact representation for diamond-based
multiresolution scalar fields. Our encoding of diamonds allows the recovery of all local
mesh geometry and topology from the coordinates of the central vertex of each diamond.

Supercube clustering provides an efficient means of associating information with a
subset of the diamonds within an RSB hierarchy by exploiting the spatial and hierarchical
coherence within the dataset.

Our supercube clustering of the retained samples reduces the geometric overhead by
compactly indexing up to 4d − 2d samples. Supercubes also enable an efficient encoding
of an active front of a selective refinement query. We demonstrated the effectiveness of
this clustering over a wide range of two and three-dimensional datasets and error criteria
and discussed situations where a full DMSF would be more appropriate.

As such, supercube-based representations are most effective when encoding data on
a subset of the diamonds of an RSB hierarchy that is sparse compared to an encoding for
all diamonds in the hierarchy and coherent with respect to the supercube clustering.

Compared to the sparse representation of Gerstner [Ger03a] (in 2D), our represen-
tation supports random access as well as general selective refinement queries and does
not require keeping track of an automaton or stacks of scalar values. The overhead of our
supercube based representation is less than 1 byte per sample in 2D, compared to 3 bytes
per sample in [Ger03a].

102

(a) Tooth, ε > 10% (b) Fuel, ε > .03%

Figure 7.8: Isosurfaces extracted from DMSF models. Triangles are colored by their embedding
supercube. (a) Tooth dataset with uniform error ε > 10%. A supercube-based active front represen-
tation Σs has an average of 26.9 tetrahedra per supercube yielding an average overhead of 1 byte
per tetrahedron. The diamond-based active front Σd has an average of 2.9 tetrahedra per diamond
yielding an overhead of 2.4 bytes per tetrahedron. (b) Fuel dataset with uniform error ε > .03%.
Σs has an average of 25.6 tetrahedra per supercube yielding an average overhead of 1.05 bytes per
tetrahedron. Σd has an average of 3.3 tetrahedra per diamond yielding an overhead of 2.12 bytes
per tetrahedron.

We have demonstrated that several common volumetric datasets (in 3D) are over-
sampled by a factor of three or more while at the same time the retained elements have a
high degree of coherence with respect to supercube clustering. Thus, a supercube-based
partial DMSF is an effective multiresolution representation that efficiently supports selec-
tive refinement queries with very little geometric or computational overhead. We have also
demonstrated that a supercube-based active front representation can accelerate selective
refinement while requiring less than half the storage of a diamond-based active front data
structure.

Here, we have focused on the implementation of the internal map between super-
cubes and their associated data. However, since our indexing structure for the supercubes
at each level utilizes a hash table, our partial DMSF representations can be inflated by as
much as 40%. This can reduce the benefits of a supercube-based DMSF ∆s to a full DMSF
∆ f , when their relative differences are less pronounced. However, when the relatives sizes
are more significant, a hash-indexed ∆s still provides a significant advantage over ∆ f .
Additionally, we have demonstrated that hash-indexed DMSFs and active front representa-

103

tions based on diamonds suffer from similar or worse overhead than their supercube-based
counterparts. Alternatively, since ∆d and ∆s contain static spatial data, a perfect spatial
hash [LH06] can yield significantly lower overhead than a standard hash table.

Our discussion of supercubes has focused only on the storage requirements of a
nested RSB’s spatial decomposition. An interesting extension would be to utilize a
supercube-based DMSF for analyzing the dataset’s range. For example, we could add
a base value or error value to a supercube to enable compression of the associated di-
amond’s scalar and error values. Another compression method for the errors might be
to quantize them on a level by level basis as in [GDL+02], where error components are
quantized to 6 bits. Alternatively, downsampling the data, rather than subsampling can
improve the quality of approximated meshes [HK95, LPD+04].

Another interesting direction relates to the connection between the resolution of an
extracted mesh and the distortion (a higher-dimensional generalization of curvature) that
the retained field values induce on its domain [MDP08]. Our preliminary results [WMD10,
DIM+11] indicate that a distortion-guided extraction directs the mesh resolution towards
the salient features of the field. This enables accurate analysis of complex datasets using
significantly fewer resources.

104

Chapter 8

Topological navigation on diamond meshes

In shape modeling and analysis applications, we are often interested in computing local
properties about elements within a mesh. Such queries are typically posed in terms of
local neighborhoods surrounding a region of the mesh and require efficient support for
navigating its topological connectivity. Examples in 2D include visibility queries, such
as computing the viewshed or the horizon of a point [DM03]; generating compressed
representations of shapes [ESV96, Ros99]; computing the local curvature within a region
of the mesh [GG06]; and extraction of morphological representations in terms of critical
points and integral lines [Ban70, EHZ03]. When modeling volumetric datasets, efficient
topological queries are necessary for applications such as ray casting [BKS97, EHK+06];
morphological analysis [EHNP03]; and and computing the local mesh distortion (three
dimensional analogue of discrete curvature) [MDP08]. Additionally, in geometry pro-
cessing applications, the 1-ring of a vertex (i.e. its adjacent vertices) is often required for
computing properties such as the mesh Laplacian [DKT05]. Ideally, we would like to
extract such entities in an output sensitive manner, i.e. in time that is linear in the size of
the affected neighborhood.

Due to the increasing sizes of datasets, it is important to reduce the storage require-
ments associated with the mesh’s topological connectivity. Not only does this require
additional storage space, but it must also be maintained when modifying the mesh, for
example, during mesh simplification or refinement. Thus, many topological data struc-
tures have been developed for encoding cell and simplicial meshes (see [DH07] for a
recent survey). Such data structures differ in their representation domain, in their support
for mesh navigation, and in the subset of the incidence and adjacency relations that they
encode.

Interestingly, when dealing with structured families of meshes, we can often exploit
the unique properties induced by the mesh generation process to yield more efficient data
structures. For example, when modeling multiresolution tetrahedral meshes using the
half-edge collapse operator, the entire multiresolution structure can be encoded using less
space than the mesh at full resolution, while also providing efficient support for selective
refinement queries [CDM+04]. Compared to the general case, the loss in representational
power can often be made up for by the gains in encoding and processing efficiency obtained
by exploiting the structure of the mesh.

Diamond meshes are a compact representation for conforming RSB meshes and
exploit the fact that they are generated through the RSB scheme to achieve a compact and
efficient encoding. They do not, however, explicitly encode any topological connectivity
information such as the incidence or adjacency among neighboring mesh elements.

In this chapter, we introduce optimal querying algorithms for adjacency-based and
incidence-based topological relations on two- and three-dimensional diamond meshes us-

105

ing only information about the existence of vertices and diamonds in the mesh. In contrast,
previous approaches have only considered the boundary and hierarchical relationships
of diamonds [GDL+02], or navigation on simplex-based RSB meshes [EKT01, LDS01,
AM07], which require significantly more storage than diamond-based representations.

Since diamond meshes are typically extracted from a multiresolution model of
the domain, these algorithms enable topological navigation to be performed directly on
these extracted diamond meshes without requiring an auxiliary step to compute and store
topological information for the entire mesh. As we demonstrate in our experiments, this
can inflate the mesh by an order of magnitude (see Table 8.2a).

The remainder of this chapter is organized as follows. We first review relevant
background notions in Sections 8.1. In Section 8.2, we analyze properties of diamond
hierarchies and diamond meshes, which forms the basis of our navigation algorithms. We
provide a general overview of our approach in Section 8.3. We then develop algorithms for
extracting the topological relations on two-dimensional diamond meshes in Section 8.4,
and generalize these to three-dimensional diamond meshes in Section 8.5. In Section 8.6,
we compare the storage and computational complexity against other approaches.

8.1 Topological relations

Let us consider a simplicial d-complex Σ and a p-simplex σ ∈ Σ, with 0 ≤ p ≤ d. The
topological relations, which we denote as Rp,q, are defined over Σ in terms of the incidence
and adjacency among its simplices:

Boundary relation Rp,q(σ), with 0 ≤ q < p, consists of the set of q-simplices that are
faces of σ.

Co-boundary relation Rp,q(σ), with p < q ≤ d, consists of the set of q-simplices incident
to σ.

Adjacency relation Rp,p(σ) consists of the set of p-simplices in Σ that are (p−1)-adjacent
to σ (when p>0), or the set of 0-simplices that are adjacent to σ through an edge
(when p=0).

Occasionally, we are interested in a subset of the relation, i.e. a partial relation, as a way
of initializing a query. We denote this as R∗p,q.

We refer to any relation which involves a constant number of entities as constant, and
to relations involving a variable number of entities as variable. In general, the co-boundary
and adjacency relations in a simplicial complex are variable, while the boundary relations
are constant. A constant relation should be retrieved by a data structure representing Σ in
constant time, while variable relations for a simplex σ should be retrieved by examining
a local neighborhood of σ. A query is said to support optimal retrieval of a topological
relation if the required time is linear in the relation’s cardinality. If the retrieval of a relation
requires examining all the simplices of a specific dimension, then the data structure does
not support efficient retrieval of that relation.

106

(a) Vertices of a diamond mesh (b) Top simplices of a diamond mesh

Figure 8.1: A diamond mesh is a conforming RSB mesh extracted from a hierarchy of diamonds
and is in correspondence with a closed set of vertices from the hierarchy (a). Each top simplex
(light pink in (b)) belongs to a single diamond (filled pink circle at midpoint of red edges in (b)).

(a) 2D diamonds (b) 3D diamonds

Figure 8.2: The two classes of diamonds in 2D (a) and the three classes of diamonds in 3D (b).
A diamond’s central vertex is at the midpoint of its spine (red edge). The blue and green circles
coincide with the central vertices of a diamond’s parents and children, respectively.

8.2 Properties of diamond meshes

A diamond mesh Σ is a conforming RSB mesh extracted from a hierarchy of diamonds. It
consists of a collection of diamonds each with at least one duet containing top simplices
in Σ (see Figure 8.1 for an example in 2D).

Recall from Section 4.6 that a diamond is complete if all of its duets belong to
the diamond mesh Σ, and that incomplete diamonds may not subdivide. Since the top
simplices in a diamond are generated during the refinement of its parents, a diamond
can only be subdivided after all of its parents have been subdivided. As a consequence,
diamond meshes are balanced, in the sense that facet-adjacent top simplices can differ by
at most one refinement depth.

Since vertices are only introduced into a mesh during the subdivision of a diamond
and each such vertex coincides with a subdividing diamond’s central vertex, the following
property holds for diamond meshes:

107

Property 1. The existence of vertex v in diamond mesh Σ implies that the diamond δ
whose central vertex is v has been subdivided.

Thus, as observed in [LKR+96, Paj98, Pup98], the diamond dependency relation
induces a dependency relation on the vertices of the hierarchy. Also, there is a unique
correspondence between a closed set of vertices from the hierarchy and a diamond mesh
Σ defined on those vertices, where the set is closed with respect to the transitive closure
of the direct dependency relation (see Figure 4.17).

This provides a framework for analyzing the longevity of certain elements of an
RSB mesh as it is refined, i.e. the number of depths in the hierarchy in which it can exist in
a mesh. Consider a diamond mesh generated through a top-down refinement of a diamond
hierarchy of infinite depth (where diamonds are refined, but never coarsened).

Lifespan of a vertex. Vertices are introduced into a diamond mesh at the central vertices
of subdividing diamonds. Thus, we can associate a level and a depth to a vertex in
correspondence to the level and depth of its associated diamond. After a vertex is
inserted into a diamond mesh, it is never removed.

Lifespan of an edge. Each edge in a diamond hierarchy uniquely corresponds to the
spine of a single diamond, which can be determined by considering the midpoint of
the edge. Edges are introduced into a diamond mesh as a subdivision edge during
the subdivision of a diamond δ between the central vertex of δ and the remaining
vertices of δ (see Section 4.4.1). An edge e is removed from the mesh during the
subdivision of the diamond whose spine is e. It is replaced by two edges bisecting
it at its midpoint (i.e. the one-dimensional RSB operation). Thus, the lifespan of an
edge is approximately one level of refinement (i.e. around d refinement depths in the
hierarchy). In 2D, edges always survive for two refinements (see Figure 8.3). In 3D,
edges aligned with cube diagonals survive for three refinements, while edges aligned
with face diagonals and cube edges can survive for two, three or four refinements.

Lifespan of a top simplex. Simplices in a diamond mesh survive for exactly one refine-
ment. They are created during the refinement of a diamond δp, and are uniquely
associated with a single child diamond δc of δp. Upon the subdivision of δc, they
are removed from the mesh.

8.3 Retrieving topological relations on diamond meshes

In this section, we provide an overview of our approach to querying the topological
connectivity of a diamond mesh. We assume a simple interface to the diamond mesh Σ

requiring only two predicates ContainsVertex(·) and ContainsDiamond(·) which query
a randomly accessible collection of vertices and diamonds in the mesh based on the
coordinates of a vertex, or of the central vertex of a diamond, respectively. In contrast
to the encoding provided in Section 6.3, we do not assume that a diamond tracks which
of its duets are present in the mesh. Since a duet d in a diamond δ in diamond mesh Σ

108

(a) Edge creation (b) Edge destruction

Figure 8.3: Edges in a d-dimensional diamond mesh survive for approximately d refinement
depths. An edge e (thick orange line on the right of (a)) is created during the subdivision of a
diamond δ, and connects a vertex of δ to its central vertex. It survives during the refinement of any
diamonds whose external boundary contains e (left of (b)) and is destroyed during the subdivision
of the diamond whose spine is e (right of (b)).

corresponds to a subdivided parent δp of δ, Property 1 implies that δp’s central vertex vδp

will be in Σ (i.e. ContainsVertex(Σ, vδp) will be true) when d is in Σ.
Our topological queries are modeled after the incidence- and adjacency-based topo-

logical relations and incorporate diamonds into the query. Thus, in addition to the (d + 1)2

topological relations Rp,q involving p- and q- simplices, where 0 ≤ p, q ≤ d, we introduce
2d+3 topological relations that operate on diamonds. The d+1 diamond co-boundary re-
lations for a p-simplex σ in Σ, which we denote as Rp,�(σ), consist of the set of diamonds
in the mesh that are incident to σ. For example, the Vertex-Diamond relation of a given
vertex v, denoted as R0,�(v), is the set of diamonds incident to v (e.g. the pink diamonds
surrounding the blue vertex in Figure 8.4c).

Similarly, the d+1 diamond boundary relations, which we denote as R�,q, consist
of the set of q-simplices within Σ that are incident to a given diamond. Note that we
always include the spine of a diamond as a member of the Diamond-Edge relation R�,1
even though it is not on the external boundary of complete diamonds (see Figure 8.2).

Finally, the Diamond-Diamond relation, which we denote as R�,�, consists of the
set of diamonds that are adjacent to a given diamond in the mesh, i.e. the diamonds that
contain a top-simplex that is adjacent to a top-simplex in the given diamond.

We also consider constrained boundary and adjacency relations on diamonds, which
we denote as R�,q|σ and R�,�|σ, respectively. These relations are a subset of the full relation
subject to also being incident to a given simplex σ in its boundary. For example, when
querying the mesh we might be interested in the Diamond-Diamond relation subject to
incidence on a common vertex v, which we denote as R�,�|v. This is useful since it can help
find the diamonds containing simplices in the star of the vertex (see Section 8.4.3).

In general, to retrieve relation Rp,q(σ) of a given p-simplexσ in diamond mesh Σ, we
first find a subset of σ’s incident diamonds, i.e. R∗p,�(σ). If applicable, this is followed by
iterating through the constrained diamond adjacency relations R�,�|σ subject to incidence
with σ. This completes the Simplex-Diamond relation Rp,�(σ). Finally, we apply the
constrained diamond boundary relation R�,q|σ to each element in Rp,�(σ), achieving our
desired result Rp,q(σ) (see Figure 8.4). All such queries are optimal: The first step is
constant, as is each iteration of the second and third step. Since the latter two steps must

109

(a) Diamond mesh Σ (b) R∗0,�(v) (c) R0,�(v) (d) R0,1(v)

Figure 8.4: Extraction of Vertex-Edge relation R0,1(v) for the blue vertex v in (a). First, we
extract the partial Vertex-Diamond co-boundary relation R∗0,�(v) by finding a diamond in the co-
boundary of v (b). Next, we iterate through the constrained Diamond-Diamond adjacency relation
R�,�|v to obtain the full Vertex-Diamond relation R0,�(v) (c). Finally, we extract the constrained
Diamond-Edge boundary relation R�,1|v to obtain the desired result R0,1(v) (blue edges in (d)).

be applied a number of times that depends linearly on the relation’s cardinality, the query
is optimal.

8.4 Retrieving topological relations on 2D diamond meshes

8.4.1 Boundary relations involving 2D diamonds
All boundary relations involving diamonds are based on the duet construct (see Fig-
ure 4.13a). A two-dimensional duet d has three fields: d.spineA, d.spineB and d.parent,
representing the location of the two spine vertices and the corresponding parent’s central
vertex. Thus, given a diamond δ, with central vertex vc, we can query its boundary rela-
tions by processing each of its two duets in constant time. Note that, for any diamond in
Σ, its spine is always in Σ, and at least one of its duets are in Σ. The status of a duet d of
diamond δ in mesh Σ is checked via the predicate ContainsVertex(Σ, d.parent). Recall
from Section 6.1 that the coordinates of a diamond’s vertices can be found using scaled
offsets from its central vertex. Figure 8.2a highlights the spine (red edge) and the central
vertices of the parents (blue filled circle) for the two classes of diamonds in 2D.

The Diamond-Vertex relation R�,0 of a diamond δ in Σ always includes both spine
vertices of δ, and, for each duet d of δ that is in Σ, its associated parent’s vertex is also in
R�,0 (see Figure 4.13a). The result of a Diamond-Vertex query can be expressed as a set
of vertices (of cardinality at most four).

Similarly, the Diamond-Edge relation R�,1 of a diamond δ in Σ always contains the
spine of δ, and for each duet d of δ in Σ, the edges from d.parent to each spine vertex of δ
belong to R�,1 as well. The result of a Diamond-Edge query can be expressed as a set of
vertex pairs or as a set of edge midpoints (of cardinality at most five).

The Diamond-Triangle relation R�,2 contains the triangle associated with each duet
of δ that is in the mesh Σ. We can express R�,2 in terms of a simplex bit flag, consisting of
two bits, where each bit correspond to one of the triangles in δ, or as a set of vertex triples,
e.g. for rendering applications.

The diamond boundary relations can be easily specialized to the incidence of a given

110

Algorithm 8.1 Diamond-DiamondRelation(δ)

Require: Σ is a valid diamond mesh, i.e. a conforming RSB mesh
Require: δ is a diamond in Σ

Require: Colors reference Figures 8.5 and 8.9.
Ensure: dSet is the set of diamonds in Σ that are adjacent to δ

1: dSet ← ∅
2: for all Duets d in δ do
3: if ContainsVertex(Σ, d.parent) then
4: for all childPt ∈ ChildPointS et do
5: if ContainsDiamond(Σ, childPt) then
6: Insert childPt into dSet
7: else
8: if ContainsDiamond(Σ, neighborPt) then
9: Insert neighborPt into dSet

10: else
11: Insert d.Parent into dSet
12:
13: return dSet

vertex. For example, if σ is a spine vertex of δ, then the constrained Diamond-Triangle
relation R�,2|σ is unaffected, but the constrained Diamond-Edge relation R�,1|σ will omit
the edges between the duet’s parent vertices and its opposite spine vertex. Similarly, if σ
is a parent vertex, then R�,2|σ will omit the triangle from the other duet, regardless of its
presence in Σ, and R�,1|σ will omit the spine as well as both edges from the other duet.

The remaining boundary relations R2,1, R2,0 and R1,0 can be obtained directly if the
given edge or triangle is expressed as a tuple of vertices, or it can be queried in linear time
by finding the incidence relations R2,�(σ) or R1,�(σ), where σ is a 2-simplex or 1-simplex,
respectively (see Section 8.4.3), and then applying the appropriate diamond boundary
query (subject to incidence with σ) as defined above.

8.4.2 Adjacency relations involving 2D diamonds
As noted in Section 8.2, one of the key properties of diamond meshes is that their edge-
adjacent triangles are guaranteed to be within one subdivision of each other. Consider
the duet d belonging to diamond δ, whose triangle is defined by the spine edge e :=
(d.spineA, d.spineB), and whose third vertex is d.parent (for example, the red triangle
in Figure 8.5d). Then a triangle t adjacent to d along the spine e of δ is either at the
same depth or it is one refinement closer to the root. In the former case, t is the triangle
belonging to the other duet in δ, and δ is a complete diamond. In the latter case, t belongs
to diamond δp, the parent diamond of δ corresponding to the other duet of δ (e.g. the blue
triangle in Figure 8.5d).

On the other hand, if t is adjacent to d along a non-spine edge, then t is either one
subdivision depth further from the root than δ, in which case, t is a triangle of a child
diamond of δ (e.g. the green triangle in Figure 8.5d), or t is at the same subdivision depth

111

(a) (b) (c) (d)

Figure 8.5: Tests for the diamonds adjacent to a given diamond (with red spine) in the general
case (a), and subject to an incident spine vertex (b) or an incident parent vertex (c). An example
R�,� relation for this diamond is shown in (d).

as δ, in which case, its associated diamond is a neighboring diamond of δ (e.g. the purple
triangle in Figure 8.5d).

Since diamonds uniquely correspond to grid points within the hierarchy that are not
vertices in the mesh (via their central vertices), we can satisfy adjacency queries using the
ContainsVertex and ContainsDiamond predicates on a few easily calculated grid point
near δ. These relationships are derived entirely from the position of the duet’s vertices, as
shown in Figure 8.5a and in Algorithm 8.1. Given a duet d, our first test involves d.parent.
If the vertex is present (i.e. its associated diamond has subdivided), we check the two
childPt vertices, coinciding with the midpoints of the edges between the d.parent and the
spine vertices, i.e.

ChildPointS et =

 1
2 (d.parent + d.spineA)
1
2 (d.parent + d.spineB).

In either case, if the corresponding diamond is not present, we check

neighborPt = vc + 2 (childPt − vc) .

Note that the set of neighbor points is a subset of the parents of the children of δ and also
of the children of the parents of δ. That is, if δn is the diamond whose central vertex is
neighborPt, then δn ∈ Children(Parents(δ)) and also δn ∈ Parents(Children(δ)).

As with the boundary relations, this algorithm can be constrained to accommodate
an incident vertex or edge σ, which we denote as R�,�|σ. Figures 8.5(b) and (c) illustrate
the required changes to Algorithm 8.1 when the incident vertex is a spine vertex of δ, or if
it is a parent vertex of a duet of δ.

8.4.3 Co-boundary relations involving 2D diamonds
The co-boundary relations are defined in terms of their diamond counterparts Rp,�. We
first consider the Triangle-Diamond relation R2,�, then the Edge-Diamond relation R1,�

and, finally, the Vertex-Diamond relation R0,�.
Recall that each triangle in Σ is uniquely contained by a single diamond δ in Σ.

Given a triangle t defined by three bounding vertices, its corresponding diamond δ is

112

(a) (b) (c)

Figure 8.6: The three possible Edge-Diamond cases in 2D. (a) Both parents refined. (b) One
parent refined. (c) Neither parent refined.

found by checking the midpoints vm of its edges such that ContainsDiamond(Σ, vm) is
true and also that the third vertex v′ of t is a vertex of this diamond (i.e. it belongs to
R�,0(δ)). The complexity of R2,� is constant (with cardinality one).

As an example, consider the three vertices of the red triangle tred in Figure 8.5d. If
we test the midpoint of the upper right edge of tred, we find that it is a diamond δgreen in Σ

(i.e. the one containing the green triangle). However, since the third vertex of tred is not a
vertex of δgreen, it is not the diamond containing t. In contrast the left edge is a diamond
δred in Σ, whose vertices include the third vertex of tred. so R2,�(tred) = {δred}.

We use a similar approach to extract the Edge-Diamond relation R1,� for the dia-
mond(s) incident to a given edge e. Let ve be the midpoint of e, and δe the diamond whose
spine is e. Then e is either: (a) a spine of a complete diamond δe, containing both of its
duets (Figure 8.6a), (b) a spine of an incomplete diamond δe, containing one of its duets
(Figure 8.6b) or (c) not a spine of a diamond in Σ (Figure 8.6c). In the second case, the
parent diamond associated with the other duet of δe is the second diamond in R1,�(e). In
the final case, R1,�(e) consists of both parents of δe. The complexity of this operation is
constant.

Extraction of the Vertex-Diamond relation R0,�(v) for a vertex v in diamond mesh Σ

involves three steps (as illustrated in Figure 8.7 for the center point of the diamond mesh
from Figure 8.1).

Step 1: First, we find a single edge e incident to v, i.e. e is in the partial relation R∗0,1(v),
through a series of edge bisections. Let δ be the diamond whose central vertex is v.
Then, based on Property 1, we know that δ is a subdivided diamond, and, thus, an
edge was created from v to the two spine vertices of δ at some previous refinement
step. Let us denote these vertices as vδa and vδb .

As a first approximation to R∗0,1(v), consider the edge e := (v, vδb), with midpoint ve.
If ve is not a vertex in Σ, then e is an edge in Σ. Otherwise, e is not an edge in Σ, so it
must have been bisected at some point. Therefore, we can replace the second vertex
in e with ve and repeat until we find an edge without a midpoint in Σ (Figure 8.7a).

Step 2: Next, we find the diamonds incident to edge e. This is accomplished via the
constant relation R1,�(e) as described above(see Figure 8.7b).

113

(a) Step 1 (b) Step 2 (c) Step 3

Figure 8.7: The Vertex-Diamond relation R0,� for the midpoint v (green vertex) of a diamond mesh:
(a) First an edge (red) in R∗0,1 is found. (b) Then, the diamonds (red triangles) in its co-boundary
are found using R1,�. (c) Finally, its adjacent diamonds (green) are found by iterating on R�,�|v.

Step 3: Finally, we iterate around the star of v by finding all unique diamonds in R�,�|σ(v)
(see Figure 8.7c).

Together, R0,� is found through a combination of relations R∗0,1(σ), R1,� and R�,�|σ.
To analyze its complexity, let the level of v, denoted as Level(v), be the refinement level
of diamond δ whose central vertex is v. Then the algorithm for R∗0,1(σ) checks at most
N − Level(v) vertices, where N is the maximum level of resolution. Since we consider N
to be constant for all practical applications, R∗0,1 is a constant operation. The second step
is constant, since R1,� is a constant relation. Finally, R�,�|σ is run once per diamond in R0,�,
so R0,� is optimally supported.

8.4.4 Deriving the remaining topological relations
By combining the above relations, we can easily define the vertex adjacency and co-
boundary relations R0,{0,1,2}(v) of a vertex v in terms of the R0,� relation and the R�,{0,1,2}|v
relations. Since all steps are optimally supported, relations R0,{0,1,2} are as well.

The only remaining relation is the Edge-Edge adjacency relation R1,1, which consists
of all edges in Σ that are incident to a given edge e := (v1, v2) along one of its vertices.
This operation can be easily satisfied by merging the results of R0,1(v1) and R0,1(v2), and
is therefore optimal as well.

8.5 Retrieving topological relations on 3D diamond meshes

Many of the techniques developed for 2D diamond meshes in Section 8.4 can be gener-
alized to 3D diamond meshes after restructuring them to handle three-dimensional duets.
In this section, we focus on these differences and on the new techniques required for
topological navigation on three-dimensional diamond meshes.

Recall from Section 4.5, that 3D duets are defined by two face-adjacent tetrahedra
of δ that are generated concurrently during the subdivision of a single parent δp of δ.
Their common face is defined by the spine of their associated diamond δ, as well as the

114

d.parent d.spineB

d.v1

d.v2

d.spineA

Figure 8.8: Elements of a three-dimensional duet. A 3D duet has
five vertices: the two spine vertices d.spineA and d.SpineB (red),
the parent vertex d.parent (blue) and the two wing vertices d.v1
and d.v2 (gray). It has nine edges: the spine (red), four edges from
a spine vertex to a wing vertex (gray), two edges from a spine
vertex to the parent vertex (green) and two edges from the parent
vertex to the wing vertices (blue). Finally, it has seven triangular
faces: the face between the two tetrahedra, four faces incident
to the parent vertex and one of the spine vertices and two faces
incident to the spine.

central vertex of δp (see Figure 8.8). We first observe that neighboring tetrahedra within a
diamond have three vertices in common. By connecting the adjacent edges of a diamond’s
tetrahedra that are not incident to its spine, we obtain a loop, which we refer to as the
diamond’s belt, which provides a linear ordering on the simplices within a diamond (see
blue edges in Figure 4.9b).

In particular, when traversing around the belt vertices, every other vertex corre-
sponds to the central vertex of a parent of δ (see Figure 8.2b), and, thus, to a 3D duet.
The intermediary vertices, which we refer to as the wing vertices of the duets are shared
between two adjacent duets within δ.

8.5.1 Boundary relations involving 3D diamonds
As in 2D, the boundary relations are defined in terms of their atomic building blocks, the
duets. A duet d belongs to a diamond δ ∈ Σ, if its associated parent vertex d.parent is
in the mesh. Thus, processing a diamond requires 3, 2 or 4 tests on the vertices in Σ for
0-, 1- and 2-diamonds, respectively. One caveat is that, for 2-diamonds on the domain
boundary, some of the duets contain only a single tetrahedron, so additional checks on the
wing vertex might be necessary.

The Diamond-Vertex relation R�,0(δ) of a diamond δ in Σ always contains the spine
vertices of δ. Additionally, for each duet in Σ, the parent vertex and both wing vertices
belong to R�,0. The result of a R�,0 query is a set of vertices of cardinality at most 8, 6 or
10 (depending on the diamond class). Similarly, the Diamond-Edge relation R�,1 and the
Diamond-Triangle relation R�,2 are satisfied by adding all edges and triangles, respectively,
from the duets of δ that are in the mesh, and can be answered in terms of vertex tuples.
R�,1 has a constant cardinality of at most 19, 13 or 25 elements (i.e the spine plus three
edges per tetrahedron in δ), while R�,2 has a constant cardinality of at most 18, 12 or 24
elements (three unique faces per tetrahedra in δ).

As in the 2D case, the Diamond-Tetrahedron relation R�,3 can either be answered as
a set of vertex tuples, or as a simplex bit flag, where each bit corresponds to a tetrahedron
in δ, and the tetrahedra are ordered according to the traversal of the diamond’s belt vertices.
Since there are at most eight tetrahedra in a diamond, a single byte is sufficient to satisfy
this query.

To analyze the constrained diamond boundary relations R�,q|σ(δ) subject to incidence
with a q-simplex σ in δ’s boundary, we need to consider the types of vertices, edges and

115

(a) (b) (c)

Figure 8.9: Tests to find the diamonds adjacent to a given 3D diamond. (a) 0-diamond (b)
1-diamond (c) 2-diamond. Vertex colors indicate spine (red), parent (blue), child (green) and
neighbor (purple).

faces that exist in a duet d of a diamond δ (see Figure 8.8). A duet d has: (a) two spine
vertices (d.spineA and d.spineB); (b) two wing vertices (d.v1 and d.v2); and (c) one parent
vertex (d.parent). Spine vertices are common to all duets in δ, while wing vertices are
common to a pair of adjacent duets in δ. The parent vertex belongs to only one duet in δ.

The four categories of edges within a duet are: (a) the spine edge; (b) the four edges
containing a spine vertex and a wing vertex; (c) the two edges containing a spine vertex
and the parent vertex; and (d) the two edges containing the parent vertex and a wing vertex.
The first category is common to all duets in δ, while the second category is shared between
an adjacent pair of duets in δ. The final two categories belong to only a single duet in δ.
Note that an edge can never be bounded by both wing vertices of a duet.

Similarly, the three categories of faces in a duet are: (a) one face containing both
spine vertices and the parent vertex; (b) four faces containing a spine vertex, a wing vertex
and the parent vertex; and (c) two faces containing both spine vertices and a wing vertex.
The first and second categories belongs to only one duet in δ, while the third category is
shared by two duets in δ.

Thus, if the incident simplex σ includes at least one of the spine vertices, all duets
are involved in the query, although, some boundary relations involving its other spine
vertex can be safely omitted. Otherwise, the simplex σ can be incident to only one or two
duets in δ.

8.5.2 Adjacency relations involving 3D diamonds
As was the case in 2D, the neighbors of a duet in Σ along the spine of δ either belong to δ
or to a parent of δ, while those along the exterior faces can belong to a child of δ or to a
parent of the child that is at the same refinement depth as δ.

Our Diamond-Diamond adjacency query R�,� utilizes the general algorithm pro-
vided in Algorithm 8.1. However, we must redefine appropriate childPt and neighborPt
locations depending on the class of the diamond δ (see Figure 8.9).

116

For 0-diamonds, each duet d has three childPt vertices, which are located at the
midpoint of the three cube faces incident to d.parent. Their locations are:∗

ChildPointS et =


1
2 (d.spineB + d.parent)
1
2 (d.spineA + d.v1)
1
2 (d.spineA + d.v2).

Each childPt has a corresponding

neighborPt = vc + 2(childPt − vc).

A duet d of a 1- or 2-diamond, has four childPt vertices

ChildPointS et =


1
2 (d.spineA + d.v1)
1
2 (d.spineA + d.v2)
1
2 (d.spineB + d.v1)
1
2 (d.spineB + d.v2).

Each childPt of a 1-diamond has a corresponding

neighborPt = childPt + (d.parent − vc),

while, the two childPts of a 2-diamond corresponding to each spine vertex share the same
neighborPt. Thus, these duets have only two unique neighborPts:

neighborPt ∈

d.spineA + (d.parent − vc)
d.spineB + (d.parent − vc).

The implementation of the constrained diamond-adjacency relations R�,�|σ follows a
similar analysis as the constrained diamond-boundary relations R�,i|σ (see Section 8.5.1).

8.5.3 Co-boundary relations involving 3D diamonds
The Tetrahedron-Diamond co-boundary relation R3,� is similar to the 2D case as well.
Each tetrahedron T ∈ Σ uniquely maps to a single diamond whose spine coincides with
an edge of T . However, in the 3D case, both non-spine vertices of T must belong to the
diamond for the correct results.

The analysis of the Triangle-Diamond relation R2,� in 3D is similar to that of the
Edge-Diamond relation in 2D, and its cardinality is either one or two. Each triangle t
either contains the spine of its incident diamond(s) or it is incident to two diamonds whose
common child’s spine belongs to t, thus, we can satisfy the R2,� relation in constant time
by checking t’s three edges.

∗This formulation assumes the d.spineA is a corner vertex of its associated supercube’s domain, while
d.spineB is at the midpoint of its domain (see Section 6.1.4).

117

The Edge-Diamond relation R1,� in 3D is more complicated than its 2D analogue
(but is still constant). Recall from Section 8.2 that edges can exist in a mesh Σ for
approximately d subdivision steps. Thus, we satisfy this query in two steps. We first
find one diamond in R∗1,� of an edge e, and then iterate on the R�,�|e to find all remaining
diamonds. The second step is implemented in the same way as the 2D Vertex-Diamond
relation R�,�|v for a vertex v (see Section 8.4.3).

Let δe be the diamond whose spine is e (which is not necessarily in Σ). A diamond
incident to e can be found by considering the ancestors of δe that are at most four sub-
divisions higher, and returning the first such ancestor in Σ that contains e. Despite the
hierarchical traversal, this step is still constant due to the structure of the hierarchy. In
practice, we found that about 66% of the cases require only one or two tests, and approxi-
mately 30% require three to six tests. We have not observed any cases where an R∗1,� query
required more than seven tests.

The final relation to consider is the Vertex-Diamond relation R0,�. Although the
cardinality of this relation is higher in 3D, the query is identical to that of the 2D case. We
first find an edge e in the partial relation R∗0,1(v). We then find a diamond δ in the partial
relation R∗1,�(e) as described above. Finally, we iterate through the R�,�|v relation until all
diamonds in the co-boundary are found. This is accomplished through a graph traversal
that marks visited diamonds as we traverse the adjacent diamonds. Since the first two
steps are constant, and the final step is optimal in the cardinality of R0,�(v), this operation
is optimally supported.

The remaining topological operations are also optimally supported, and can be
defined in terms of the co-boundary Rp,� relations coupled with the constrained diamond-
boundary relations R�,q | σ. For example, the Face-Face relation R2,2 finds all triangles
adjacent to a given triangle along its edges. This can be satisfied for a triangle t by first
finding a diamond δt incident to t, i.e. using a constant query on R2,�. Next, we find the
three edges in the boundary of t using the optimal R�,1 | t (δt) relation. Finally, using δt to
initialize R∗1,�, we find the R1,2 relation for each of the three edges by combining R1,� and
R�,2 and merge the results.

8.6 Results

In this section, we discuss representations for encoding diamond meshes, and compare
the storage costs to a simplex-based representation of RSB meshes [LDS01] and to the
extended IA data structure [PBCF93] defined for general simplicial complexes over a
manifold domain.

As discussed in Section 8.3, the primary requirements for our encoding is that we
have a valid diamond mesh defined over a closed set of vertices from a regular grid of
resolution (2N + 1) along each axis and that we can efficiently detect the presence or
absence of vertices and diamonds in the mesh. Furthermore, many applications of these
meshes encode scalar values at the vertices of the grid.

Thus, we can store the vertices and diamonds in the mesh using a diamond-based
approach or using a supercube-based approach, which we can generate from the active
front representation of Section 6.3 by iterating through the Diamond-Vertex relationships.

118

That is, for each diamond δ in the active-front based representation, (a) add the vertices
in R�,0(δ) to VertexSet by iterating through its duets; (b) add the central vertex of δ to
DiamondSet.

Assuming that each coordinate can be encoded using two bytes of memory, the cost
of this data structure for a diamond meshes with |V | vertices (each with an associated
scalar value) and |δ| diamonds is: 6 · |V | + 4 · |δ| bytes for a 2D mesh and 8 · |V | + 6 · |δ|
bytes for a 3D mesh.

Since we only require support for testing the presence or absence of the encoded
grid points bitflag-based supercube representations for the vertices and diamonds can
provide efficient support for topological navigation on diamond meshes. In 2D, the cost
of representing each supercube in the vertex set is 10 bytes: (a) 4 bytes to encode the
spatial coordinates; (b) 2 bytes to encode the 12 bit flags; and (c) 4 bytes to encode the
start index of the scalar values in a global vertex array. Similarly, since diamonds do not
have any attached values, each diamond supercube would require only 6 bytes: (a) 4 bytes
to encode the spatial coordinates; and (b) 2 bytes to encode the 12 bit flags. Additionally,
the cost of encoding the scalar values is 2 · |V |. Thus, in 2D the cost of a supercube-based
representation is 2 · |V | + 10 · |S v| + 6 · |S δ| bytes.

In 3D, the spatial coordinates require an additional two bytes and the bitflags require
and additional five bytes (i.e. seven bytes are required to encode the 56 bits rather than
two bytes in 2D), so the cost of a supercube representation is: 2 · |V | + 17 · |S v| + 13 · |S δ|

bytes.
The simplex-based encoding of [LDS01] utilizes bintree-based location codes (see

Section 6.3.1) for simplices stored in a forest of binary trees. The vertices can be encoded
through a hash table as in the diamond-based approach above, and simplices require six
bytes to index their location code. Thus, the difference in storage requirements between
this representation and the diamond-based representation is proportional to the average
number of triangles or tetrahedra per diamond in the mesh. The cost of this data structure
is: 6 · |V | + 6 · |t| bytes for a 2D mesh with |t| triangles and 8 · |V | + 6 · |T | bytes for a 3D
mesh with |T | tetrahedra.

As a final comparison, we consider the storage cost incurred by the extended Indexed
data structure with Adjacency (IA) data structure in 2D and 3D [PBCF93]. This data
structure is among the most compact topological data structures for general manifold
simplicial complexes [DH07]. It encodes an array of |V | vertices as well as |t| triangles or
|T | tetrahedra, in 2D and 3D, respectively. Each vertex requires 10 bytes: six bytes for the
spatial coordinates and four bytes to encode the index of a single tetrahedron in its star.
Each triangle requires 24 bytes: twelve bytes to encode the indices of its three vertices
and twelve bytes to encode the indices of its adjacent triangles. The cost of the IA in 2D
is therefore 10 · |V | + 24 · |T | bytes. In 3D, each vertex requires two additional bytes for
the extra coordinate, and eight additional bytes per tetrahedron to encode the extra vertex
index and adjacent tetrahedron, for a total storage cost of 12 · |V | + 32 · |T | bytes.

Table 8.1 summarizes the storage costs for the 2D and 3D representations.
Table 8.2a provides representative experimental results on the number of vertices,

tetrahedra, diamonds, in some adaptive 3D diamond meshes extracted from a hierarchy
of diamonds at uniform approximation error (column 2) from several volume datasets, as
well as the number of supercubes for the vertices and diamonds of the mesh. The average

119

Table 8.1: Storage costs (in bytes) of 2D data structures (a) and 3D data structures (b) based on
the extended Indexed data structure with Adjacencies (IA), as well as the simplex-based, diamond-
based and supercube-based representations for conforming RSB meshes consisting of |V | vertices,
|σ| top simplices and |δ| diamonds. For the supercube-based representation, |S V | is the number
of supercubes required to encode the vertices (i.e. a partial DMSF) and |S δ| is the number of
supercubes required to encode the diamonds.

(a) Storage costs of 2D data structures

2D Data Structure Cost of vertices Cost of cells

Extended IA 10 · |V | + 24 · |σ|
Simplex-based RSB 6 · |V | + 6 · |σ|
Diamond-based RSB 6 · |V | + 4 · |δ|
Supercube-based RSB 2 · |V | + 10 · |S V | + 6 · |S δ|

(b) Storage costs of 3D data structures

3D Data Structure Cost of vertices Cost of cells

Extended IA 12 · |V | + 32 · |T |
Simplex-based RSB 8 · |V | + 6 · |σ|
Diamond-based RSB 8 · |V | + 6 · |δ|
Supercube-based RSB 2 · |V | + 17 · |S V | + 13 · |S δ|

ratios of simplices to diamonds (|σ|/|δ|) tends to increases with the resolution from around
3 to 4 while the number of diamonds per supercube (|δ|/S δ|) oscillates between 8 to 10,
and the number of tetrahedra per supercube increases from around 22 to 39. The number
of vertices per supercube increases as the error decreases, since the vertices of the mesh
correspond to the refined ancestors of the diamonds in the mesh. From Table 8.2b, we see
that the simplex-based RSB representation requires around 2-3 times as much space as
the diamond-based representation, and the diamond-based representation requires around
3.5 times as much space as the supercube representation. Compared to the general IA
data structures, the RSB representations are an order of magnitude more compact. The IA
requires around ten times the storage space as the diamond-based representation, and 30-45
times as much space as the supercube-based representation. In the lossless approximations
(0% error), the IA data structure requires more than 1 GB, while the supercube-based
representation requires only 25 MB. Besides the storage space, the adjacency and partial
vertex co-boundary relations must also be generated for the IA data structure.

Another interesting property of these meshes is the average cardinality of the vertex
star and edge star operations which are among the most useful operations for navigation on
these meshes. In fact, the primary objective of the neighbor-finding scheme of [LDS01]
relates to finding the star of each bisection edge for efficient conforming updates to a
simplex-based RSB mesh. Due to properties of the decomposition scheme, the maximum
possible cardinality of R0,3 on 3D diamond meshes is 48, while that of R1,3 is 8 [WD10d].
As we can see from Table 8.3, the average cardinality of the Vertex-Tetrahedra co-boundary

120

Table 8.2: (a) Number of vertices (|V |), tetrahedra (|σ|), diamonds (|δ|), and supercubes for vertices
(|S V |) and diamonds (|S δ|) in some adaptive diamond meshes extracted at uniform approximation
error from several volumetric datasets. Also listed are the average number of vertices per super-
cube in the VertexSet (|V |/|S V |), tetrahedra per diamond (|σ|/|δ|), diamonds per supercube in the
DiamondSet (|δ|/|S δ|) and tetrahedra per supercube in the DiamondSet (|σ|/|S δ|). (b) A comparison
of the storage requirements for extended IA, Simplex-based, Diamond-based and Supercube-based
representations using the statistics from (a) and the calculations from Table 8.1b. Also listed are
some relative storage sizes of the Simplex, Diamond, Supercube and IA data structures. Volumetric
datasets courtesy of [Vol].

(a) Statistics for topological data structures in 3D

Dataset Error |V | |S V | |σ| |δ| |S δ| |V |/|S V | |σ|/|δ| |δ|/|S δ| |σ|/|S δ|

Visible Human Head
(128 × 256 × 256)

50% 1.6 K 139 8.6 K 3.3 K 397 11.9 2.6 8.3 21.7
30% 12.5 K 1.03 K 68 K 24.7 K 2.84 K 12.1 2.8 8.7 24.0
10% 254 K 18.9 K 1.40 M 515 K 49.9 K 13.5 2.7 10.3 28.1
5% 620 K 38.4 K 3.40 M 1.22 M 128 K 16.1 2.8 9.6 26.7
2% 1.21 M 53.5 K 6.66 M 2.29 M 267 K 22.7 2.9 8.6 24.9
1% 1.71 M 69.4 K 9.46 M 3.06 M 350 K 24.6 3.1 8.7 27.0

0.5% 2.55 M 94.2 K 14.2 M 4.37 M 504 K 27.0 3.1 8.7 28.3
0% 5.47 M 139 K 31.3 M 7.79 M 963 K 39.4 4.0 8.1 32.5

Foot
(256 × 256 × 256)

50% 19 K 1.54 K 103 K 37.7 K 4.24 K 12.3 2.7 8.9 24.3
30% 82.4 K 6.72 K 453 K 161 K 17.3 K 12.3 2.8 9.3 26.2
10% 1.14 M 73.1 K 6.33 M 2.17 M 237 K 15.6 2.9 9.1 26.7
5% 2.80 M 102 K 15.1 M 4.59 M 625 K 27.5 3.3 7.3 24.2
2% 4.48 M 125 K 25.0 M 6.31 M 810 K 35.8 4.0 7.8 30.9
1% 5.17 M 138 K 30.0 M 6.79 M 873 K 37.3 4.4 7.8 33.9
0% 5.90 M 151 K 34.7 M 7.03 M 898 K 39.2 4.9 7.8 38.7

(b) Storage costs for topological data structures in 3D

Dataset Error IA Simplex Diamond Supercube Simplex
Diamond

Diamond
Supercube

IA
Diamond

IA
Supercube

Visible Human Head
(128 × 256 × 256)

50% 0.28 MB 0.06 MB 0.03 MB 0.01 MB 2.0 x 3.0 x 8.9 x 27.2 x
30% 2.2 MB 0.48 MB 0.24 MB 0.08 MB 2.0 x 3.2 x 9.4 x 29.3 x
10% 45.7 MB 9.97 MB 4.89 MB 1.41 MB 2.0 x 3.5 x 9.4 x 32.4 x
5% 111 MB 24.2 MB 11.7 MB 3.39 MB 2.1 x 3.5 x 9.5 x 32.8 x
2% 217 MB 47.4 MB 22.3 MB 6.50 MB 2.1 x 3.4 x 9.7 x 33.5 x
1% 308 MB 67.2 MB 30.6 MB 8.73 MB 2.2 x 3.5 x 10.1 x 35.3 x

0.5% 308 MB 67.2 MB 30.6 MB 12.6 MB 2.3 x 3.5 x 10.4 x 36.7 x
0% 0.99 GB 221 MB 86.3 MB 24.6 MB 2.6 x 3.5 x 11.8 x 41.3 x

Foot
(256 × 256 × 256)

50% 3.37 MB 0.74 MB 0.36 MB 0.36 MB 2.0 x 3.2 x 9.3 x 29.6 x
30% 14.8 MB 3.2 MB 1.55 MB 0.48 MB 2.1 x 3.2 x 9.5 x 30.7 x
10% 206 MB 45.0 MB 21.1 MB 6.31 MB 2.1 x 3.3 x 9.8 x 32.7 x
5% 494 MB 108 MB 47.7 MB 14.7 MB 2.3 x 3.2 x 10.4 x 33.5 x
2% 815 MB 177 MB 70.3 MB 20.6 MB 2.5 x 3.4 x 11.6 x 39.5 x
1% 962 MB 209 MB 78.3 MB 22.9 MB 2.7 x 3.4 x 12.3 x 42.0 x
0% 1.1 GB 244 MB 85.3 MB 24.8 MB 2.9 x 3.4 x 13.2 x 45.4 x

121

Table 8.3: Number of vertices (|V |), tetrahedra (|σ|) and diamonds (|δ|) and the average cardinality
of the Vertex-Tetrahedra R0,3, Vertex-Diamond R0,�, Edge-Tetrahedra R1,3 and Edge-Diamond R1,�
relations for three-dimensional diamond meshes.

Dataset resolution |V | |σ| |δ| |R0,3| |R0,�| |R1,3| |R1,�|

30% 506 2.3 K 970 18.2 10.3 4.66 3.29
Fuel 10% 2.4 K 12.5 K 4.2 K 21.1 10.5 4.96 2.99

0% 19.9 K 115 K 27.8 K 23.0 9.36 5.09 2.99

10% 450 2.28 K 926 20.28 11.2 4.9 3.31
Hydrogen 1% 5.92 K 31.4 K 11.2 K 21.2 10.08 4.98 3.31

0% 545 K 3.06 M 885 K 22.45 10.27 5.06 3.4

relation R0,3 is about twice that of the Vertex-Diamond co-boundary relation R0,�. While
the cardinality Edge-Tetrahedra co-boundary relation R1,3 is about 50% greater than that
of the Edge-Diamond co-boundary relation R1,�. Due to the great deal of adaptivity of
these meshes, the numbers most likely reflect the fact that pairs of tetrahedra in the star
are grouped to the same diamond via the 3D duet construct.

8.7 Discussion

In this chapter, we introduced optimal algorithms for topological navigation on two- and
three-dimensional diamond-based RSB meshes. These algorithms exploit the structure
of the mesh to query the topological connectivity of the mesh without requiring explicit
generation or storage of any topological relations. Compared to a general adjacency-
based data structure, our diamond-based and supercube-based representations for diamond
meshes require an order of magnitude less space while still supporting optimal queries on
the local topological connectivity of the mesh.

Since the template that we use for extracting the co-boundary relations depends
only on the R∗0,1 relation, which is dimension independent, and the R∗1,� relation, whose
complexity depends only on the mesh dimension, but not the dataset complexity, we
anticipate extending these relations to higher dimensional diamond meshes. This can
be useful, for example, in analyzing time-dependent volumetric datasets. In this case,
we must analyze the properties of the 4D (and higher dimensional) duets, which can be
defined by a variable number of top-simplices (see Table 4.5). On the other hand, traversal
of a diamond’s duets should be even more efficient than a simplex-based approach since
the number of top simplices within a diamond is O(d!), while the number of parents (i.e.
the number of duets) is O(d).

122

Chapter 9

Isodiamond hierarchies

Due to the size of isosurfaces or interval volumes extracted from volume data sets, simpli-
fied representations for such structures can greatly aid in their analysis and visualization.
These simplified representations are usually obtained by applying a local mesh coarsening
operator, such as an edge collapse, to the full resolution mesh describing the isosurface or
interval volume.

However in scientific and medical applications, details at the highest available reso-
lution are required on demand, and thus, simplified approximations of these datasets are
not sufficient. Therefore, it is often desirable to have a multiresolution representation of a
specific isosurface or interval volume from which simplified adaptive representations can
be efficiently extracted on demand.

When a multiresolution isosurface or interval volume is extracted from a multireso-
lution model of the underlying scalar field, its structure should be coherent with the model
of the scalar field. In other words, a natural multiresolution representation for an isosurface
or an interval volume is defined by the intersection of the former with the atomic modi-
fications in the multiresolution model of the field. The resulting multiresolution model
clearly inherits the dependency relation from the dependency graph of the multiresolution
field model.

We consider here the problem of defining multiresolution models of isosurfaces, and
interval volumes, when the underlying multiresolution field model is defined by a hierarchy
of diamonds. As shown in Chapter 6, the regularity of the vertex distribution of a hierarchy
of diamonds enables a very compact encoding which we exploit to produce effective and
compact multiresolution models for isosurfaces and interval volumes. Specifically, each
local modification to the isosurface or interval volume intersecting a specific diamond δ
has a one-to-one correspondence with the modification associated with δ. Since diamonds
are defined on a regular grid, they are much simpler to encode than the modifications to
the general triangle or tetrahedral mesh representing the isosurface or interval volume.

Note that, although our descriptions and experiments in this chapter focus on the
three dimensional case, the isodiamond hierarchy framework can be generalized in a
dimension-independent manner.

9.1 Isodiamonds

The basic idea in defining a multiresolution model for an isosurface S , or interval volume
I, extracted from a hierarchy of diamonds ∆ consists of considering only a subset of
the diamonds in ∆ and possibly the intersection of S or I with such diamonds. We
call the diamonds in this multiresolution model isodiamonds, and the intersection of an
isodiamond with S or I an isosurface or interval volume patch, respectively. Each patch

123

is triangulated based on the values of the sign field associated with the corresponding
diamond in ∆ (see Section 2.3.1). We call the ordered set of such sign values the bit
pattern of the diamond.

Since we are interested in the ability to reconstruct the isosurface S , or interval
volume I, at intermediate uniform or variable-resolutions, we need to include in the model
all isodiamonds with non-empty patches, that we call active isodiamonds. However,
since S or I depends on the range of the scalar field rather than its domain, we require a
spatial index on the active isodiamonds. The latter is obtained by considering the relevant
isodiamonds, which are the ancestors of active isodiamonds that have empty patches. An
important subset of the relevant isodiamonds are the creation isodiamonds, which create
a new topological component of S or I upon subdivision. The remaining isodiamonds are
inactive with respect to S or I.

More formally,

• an active isodiamond δ is an isodiamond such that both δ and the associated subdi-
vided isodiamond δs contain at least one active tetrahedron; thus, both δ and δs are
intersected by the isosurface or interval volume (see Figure 9.2b).

• a creation isodiamond is an isodiamond δ which does not intersect the isosurface S
or the interval volume I, but the tetrahedra of the associated subdivided isodiamond
δs are all active (see Figure 9.3).

• a relevant isodiamond is an isodiamond δ which does not intersect the isosurface S
or interval volume I but at least one of its descendants intersects either S or I.

Figure 9.1a illustrates the various isodiamond types on a small isodiamond hierar-
chy whose underlying hierarchy of diamonds ∆ covers a square 2D domain and has the
dependency graph depicted in Figure 9.1b. For simplicity, we only show the unsubdivided
diamonds. The central vertices of active, relevant, creation and inactive isodiamonds are
indicated by green, blue and red and white vertices at their spine centers, respectively. The
top row describes the single (unsubdivided) isodiamond corresponding to the root of ∆.
Since it intersects the isosurface, it is an active isodiamond (indicated with a green central
vertex). The next row describes the four children of the root diamond in ∆. Two of these
are active isodiamonds (green), and the other two are relevant isodiamonds (blue). The
third row shows the four children of those at level two, of which, two are active isodia-
monds, one is a relevant isodiamond and one is a creation isodiamond. As illustrated in
the final row, the patches generated by subdividing the creation isodiamond form a new
isosurface component. Figure 9.4 illustrates the isodiamond types of the 2D Bonsai tree
dataset (with isovalue κ = 58), by coloring the central vertices as above.

We have developed two multiresolution models for isosurfaces and interval volumes
extracted from a diamond hierarchy. The Relevant Isodiamond (RI) hierarchy (described
in Section 9.3) closely follows the hierarchy of diamonds encoding the underlying field
since it represents both the active isodiamonds and the relevant isodiamonds. Thus, a
modification in an RI hierarchy corresponds to a diamond δ in the associated diamond
hierarchy ∆ such that the range of the field values within δ contains the isovalue κ defining
the isosurface, or the isorange K defining the interval volume.

124

(a) Isodiamonds (b) HD dependency graph (c) RI dependency graph (d) MI dependency graph

Figure 9.1: Isodiamonds (a) and associated dependency graphs (b-d) for a small 2D isodiamond
hierarchy. Active isodiamonds (green central vertices) intersect the isosurface (orange lines). Rele-
vant isodiamonds (blue central vertices) are empty ancestors of the active isodiamonds. Creation
isodiamonds (red central vertices) are relevant isodiamonds that create a new topological compo-
nent after subdivision. All other isodiamonds are inactive (white central vertices). The dependency
graph of the MI hierarchy (d) is a subgraph of the RI hierarchy’s dependency graph (c), which, in
turn, is a subgraph of the HD’s dependency graph (b).

In contrast, the Minimal Isodiamond (MI) hierarchy (described in Section 9.4) just
contains the modifications that intersect the isosurface S or interval volume I. Since the
relevant isodiamonds do not intersect S or I, and mainly serve as a spatial access structure
for the active and creation isodiamonds, they are not strictly necessary to reconstruct S or
I. The key novelty in the MI model is its ability to extract simplified conforming meshes
describing the isosurface, or interval volume, without storing the relevant isodiamonds.

9.2 Encoding isodiamonds

Due to the one-to-one correspondence between isodiamonds and diamonds in the hierarchy
of diamonds, each patch in the RI or MI hierarchy is encoded (using a marching cells rule)

(a) Diamond modification (b) Isodiamond modification

Figure 9.2: Modifications associated with an isodiamonds in an isodiamond hierarchy (b) corre-
sponds to modifications of diamonds in the diamond hierarchy (a).

125

(a) (b) (c)

Figure 9.3: All possible creation isodiamond modifications. The unsubdivided isodiamond δ (a)
and the subdivided isodiamond δs for an isosurface (b) or for an interval volume (c, two cases).

Figure 9.4: Isodiamond types for 2D bonsai tree dataset (κ = 58). The color of the central vertex
of a diamond indicates its corresponding isodiamond type. Of the 2572 diamonds, there are 5,242
active isodiamonds (green), 123 creation isodiamonds (red) and 2,877 relevant isodiamonds (blue).

126

through:

• the bit pattern of the corresponding diamond and

• the intersection vertices of the corresponding patch, which we call isovertices.

Each patch can then be triangulated via a lookup table on the bit pattern, by using the
isovertices.

Since diamond modifications are local and only affect the interior vertices and edges
of the diamond, (see Section 4.4.1), we may assume that the bit pattern and isovertices
on the boundary of an isodiamond have already been encoded in ancestor isodiamonds.
Thus, the patch corresponding to a subdivided isodiamond δs can be reconstructed from
the patch corresponding to δ using only

• the sign value of the central vertex of δs and

• the isovertices for each active subdivision edge of δs.

Figure 9.2 illustrates a modification to an interval volume patch (in 2D) corresponding
to the subdivision of an active isodiamond δ. Observe that the modification removes the
isovertices on the spine of δ (red vertices in Figure 9.2b) and inserts new isovertices along
its active subdivision edges (blue vertices in Figure 9.2b). The patch is then retriangulated
using the new isovertices. Patch vertices and edges intersecting the diamond’s boundary
(black squares in in Figure 9.2b) are unaffected by the modification.

Recall that, under linear interpolation, all patch isovertices lie along edges of tetra-
hedra. Thus, rather than encoding each isovertex using its (x, y, z) position, we use an
interpolation coefficient along the unique subdivision edge containing the vertex. For com-
pactness, we quantize each isovertex to a single byte. This is an appropriate compromise
between storage space and accuracy, since the lengths of the diamond edges shrink as their
level increases.

Based on the bit pattern associated with the isodiamond, a lookup table can be
used to determine the number of isovertices introduced by the modification as well as
an (ordered) list of indices for the active subdivision edges. To maintain constant-sized
modifications, the isovertices are stored in a global isovertex array and only the index of
the first isovertex is encoded with each modification.

Note that the encoding of an isodiamond does not include the scalar values of the
original volume data set, but only the sign field of the vertices of the data set. The efficiency
of the resulting data structure derives from exploiting the regular spatial decomposition
and the implicit dependency relation induced by the hierarchy of diamonds representation,
while only encoding the modifications that relate to the specific isosurface or interval
volume.

9.3 Relevant isodiamonds

In this section, we present the Relevant Isodiamond (RI) hierarchy for an isosurface S
or an interval volume I. We describe first the data structure encoding it (Section 9.3.2).
Next, we review the algorithm for generating an RI hierarchy from a hierarchy of diamonds

127

(Section 9.3.3). Finally, we discuss how variable-resolution isosurfaces or interval volumes
can be extracted from an RI hierarchy through selective refinement (Section 9.3.4).

9.3.1 Definition
A Relevant Isodiamond (RI) hierarchy, that we denote as ∆R, is defined by the subset of
modifications of the corresponding hierarchy of diamonds ∆ that are active or relevant with
respect to the isosurface S or interval volume I. The dependency relation in ∆R is defined
as the restriction of ∆’s dependency relation to the active and relevant isodiamonds. Thus,
every relevant and active isodiamond will have in ∆R the same parents as the corresponding
diamond in ∆ but some of the children isodiamonds might be missing in ∆R (as compared
to ∆), if they are neither active nor relevant. Figure 9.1c shows the dependency graph
of the RI hierarchy ∆R associated with the multiresolution isosurface representation of
Figure 9.1a. The graph describing ∆R contains a subset of the arcs of ∆’s dependency
graph (see Figure 9.1b), where the missing arcs have endpoints corresponding to inactive
isodiamonds (white central vertices).

It can be easily seen that the dependency graph describing ∆R is a connected sub-
graph of the one describing ∆ and has the same root, which can be an active or a relevant
isodiamond. Although the relevant isodiamonds do not intersect S or I, and thus their
associated patches are empty, they are used here to guarantee the transitive closure of the
dependency relation (as discussed in Section 2.4).

9.3.2 Data structure
The patch of S or I corresponding to the base mesh is encoded through the sign field of
the eight corner vertices of the cubic field domain and through interpolation coefficients
for all the isovertices along the active edges of the root diamond.

All isovertices introduced during a modification are located along the active subdivi-
sion edges of its associated subdivided isodiamond δs, and are stored in the isovertex array
as interpolation coefficients. For interval volumes, each subdivision edge can be active
with respect to the lower surface and/or the upper surface, and thus can generate at most
two isovertices. Since isovertices between the two surfaces of I coincide with the vertex of
a diamond they are implicitly encoded. Thus, only the isovertices of an interval volume’s
upper and lower surfaces need explicit encoding. Since the dependency relation in ∆R

is inherited from the dependency relation of ∆, we can compute all parents and children
from the coordinates of the central vertex of the isodiamonds.

With each modification u = (δ, δs) in an RI hierarchy, we encode the following
information, thus using 12 bytes per modification:

• central vertex vc of the isodiamond δ (encoded using six bytes as three unsigned
shorts);

• sign value of vc (encoded using one bit for isosurfaces or two bits for interval
volumes);

• index of the first isovertex associated with the modification in the isovertex array
(encoded as a four-byte unsigned int);

128

• approximation error associated with the isodiamond to accelerate selective refine-
ment queries (quantized to fourteen bits in the range [0, 1]).

Assuming that the vertices of the base mesh of the hierarchy of diamonds ∆ are
located at offset zero in the vertex array, the cost of encoding the base mesh is just that
of encoding its sign field. Since the root diamond is a 0-diamond with eight vertices, its
sign field requires a single byte for isosurfaces or two bytes for interval volumes. Since
each isovertex is encoded as an interpolation coefficient using eight bits, storing the |v|
isovertices requires |v| bytes. Finally, since the dependency relation is implicitly derived,
the cost of the data structure for encoding a three dimensional RI hierarchy is

2︸︷︷︸
base mesh

+ 12 ∗ (|ma| + |mr|)︸ ︷︷ ︸
modifications

+ |v|︸︷︷︸
vertices

bytes,

where |ma| is the number of active isodiamonds and |mr| is the number of relevant isodia-
monds.

9.3.3 Generating an RI hierarchy
Given a hierarchy of diamonds ∆ and an isovalue κ for isosurfaces (or an isorange K for
interval volumes), an RI hierarchy ∆R is generated from ∆ by performing a top-down
traversal of the dependency graph describing ∆. At each node, the algorithm checks
whether the min/max field values associated with the corresponding modification contain
the isovalue (or the isorange). Modifications that do not contain the isovalue (or isorange)
are irrelevant and neither they nor their descendants are stored in the RI hierarchy. All
modifications that contain the isovalue (or isorange) will be copied in ∆R as pointed out
before, but only some of them (i.e. the active ones) intersect the isosurface (or interval
volume). A closure operation must then be applied to ensure that all relevant ancestors are
retained.

For all diamonds δ which intersect the isosurface or interval volume, the field values
associated with the vertices of δ are used to compute the interpolation coefficients of each
new isovertex along the active subdivision edges. Specifically, for each active subdivision
edge e := {v, vc} of δ, where vc is the central vertex of δ, the interpolation coefficient γ
is computed as γ = (κ − F(vc))/(F(v) − F(vc)). It is then quantized to eight bits as the
integer value bγ ∗ 28 + 0.5c.

9.3.4 Querying an RI hierarchy
Simplified isosurfaces or interval volumes can be extracted from the relevant isodiamond
hierarchy through selective refinement. The selective refinement query is defined through
a selection criterion based on the approximation error, which can vary in different parts of
the isosurface (or interval volume).

The selective refinement algorithm operates as a top-down traversal of the depen-
dency graph describing the RI hierarchy ∆R. It is initialized with the modification corre-
sponding to the root of ∆R and at each step extracts a closed set of modifications defining
a cut in the dependency graph of ∆R, called the active front.

129

Since each modification in an RI hierarchy ∆R is a modification in the correspond-
ing hierarchy of diamonds ∆ there are two meshes associated with a cut C defining an
active front. The current diamond mesh Σδ is formed by tetrahedra of ∆ belonging to
the base mesh or generated by the modifications in C or in their ancestors. The current
extracted mesh Σ is formed by triangles of the isosurface (or tetrahedra of the interval
volume) intersecting the tetrahedra in the current diamond mesh. The latter contains the
triangles (or tetrahedra) intersecting the base mesh or generated by the active or creation
modifications in C or in their ancestors. In our implementation, we keep track of the active
front and encode Σ’s patches by storing the bit patterns and isovertices of the unsubdivided
isodiamonds corresponding to diamonds in Σδ.

The selective refinement process extracts the current extracted mesh satisfying the
specified selection criterion by moving the active front down from the root of the depen-
dency graph. Modifications are performed if an isodiamond does not satisfy the selection
criterion, or they are forced in order to satisfy the transitive closure of the dependency
relation (thus, they may be applied even to isodiamonds which satisfy the error criterion).
In either case, a modification cannot be applied until all of its ancestor modifications have
been applied. Since relevant isodiamonds are also stored in an RI hierarchy, all ancestors
of a given isodiamond are guaranteed to be available.

All meshes extracted from an RI hierarchy are conforming since the patch within
each diamond is conforming, and a careful generation rule for the intersection cases en-
sures that adjacent patches are conforming (e.g. edges of neighboring patches are aligned).
This is not an issue for isosurfaces, but for interval volumes this is guaranteed through the
use of a unique lexicographic ordering on the vertices [NS97].

Figure 9.6a illustrates the result of a selective refinement query on the RI hierarchy
defined by isovalue κ = 58 on the 2D Bonsai tree dataset (see Figure 9.4). The current
diamond mesh (gray, blue and green triangles) covers the entire domain, and the current
extracted mesh (blue line segments) approximates the isosurface at full resolution.

9.4 Minimal isodiamonds

In this section, we introduce the Minimal Isodiamond (MI) hierarchy for an isosurface
S or an interval volume I. A Minimal Isodiamond (MI) hierarchy, that we denote as
∆M, is defined by the subset of modifications of a relevant isodiamond hierarchy ∆R that
increase the number of simplices in the extracted isosurface, or interval volume. Thus,
only creation and active isodiamonds are included. The remaining relevant isodiamonds
are excluded from ∆M, and their absence must be accounted for in the model as well as
during selective refinement.

9.4.1 Definition
The base mesh of ∆M is formed by the (unsubdivided) creation isodiamonds as well as
the unsubdivided diamond associated with the root of ∆R, if the latter corresponds to an
active isodiamond. The modifications in ∆M correspond to the subdivision of active and
creation isodiamonds. Finally, ∆M’s dependency relation is a subset of ∆R’s dependency
relation restricted to the active and creation isodiamonds. Clearly, it can also be viewed

130

as the restriction of the dependency relation of ∆ to the modifications in ∆M. Thus, the
dependency graph of ∆M is a (possibly disconnected) subgraph of the dependency graph
describing ∆R, whose roots are the creation isodiamonds as well as the root of ∆R, if it is
an active isodiamond. Figure 9.1d shows the dependency graph for the MI hierarchy ∆M

associated with the multiresolution isosurface representation of Figure 9.1a. The single
creation isodiamond on the third row is a root of ∆M’s dependency graph. Additionally,
since the root of ∆R is an active isodiamond, it is also a root of ∆M’s dependency graph.
Compared to the dependency graph of ∆R in Figure 9.1c, we observe that all arcs lead-
ing from active or creation isodiamonds to active isodiamonds are retained, while those
containing a relevant isodiamond or leading to a creation isodiamond are not retained by
∆M.

We can get a better understanding of the structure of the dependency graph by
analyzing the arcs between its modifications. Recall that the parent-child duets have a
one-to-one correspondence with the arcs of the dependency graph of ∆ (see Section 4.4.3).
We consider a parent-child duet to be active if at least one of its tetrahedra are active,
i.e. intersected by the isosurface or interval volume. We now show that the arcs of the
dependency graph of ∆M correspond to the active parent-child duets of the dependency
graph of ∆R.

Theorem 9.4.1. Let dpc be an active parent-child duet between a parent diamond δp and
its child diamond δc. Then, δp is either an active isodiamond or a creation isodiamond.

Proof. Since dpc is active, it has at least one vertex v with a different sign value than
some other vertices in dpc. If v is not the central vertex of δp, then through the duet
correspondence between vertices of the parent and child diamond, δp has two vertices
with different bit values and is therefore an active isodiamond. Otherwise, assume that
v is the central vertex of δp and that δp is not an active isodiamond. Then, since v has a
distinct bit value from the other vertices of δp, it is a creation isodiamond. �

Since non-active duets do not carry information related to the isosurface S or interval
volume I, the arcs of the dependency graph of ∆M retained from the ones of ∆R are exactly
those between parents and children corresponding to active parent-child duets. However,
recall that the dependency graph is not explicitly represented in the model.

9.4.2 Properties
We report here some properties of creation isodiamonds δc and active isodiamonds δa in
the MI hierarchy and in the corresponding RI hierarchy. These properties are important
for extracting conforming representations from an MI hierarchy.

The parents of a creation isodiamond in ∆R can be either active or relevant isodia-
monds, as depicted in Figure 9.5, where the parents of a creation isodiamond (red) are an
active isodiamond (green) and a relevant isodiamond (blue), respectively. Since creation
isodiamonds are roots of ∆M, none of these arcs are retained in the dependency graph of
∆M.

The children of a creation isodiamond in ∆R are all active isodiamonds. Since the
duet dca between a creation isodiamond δc and a child δa is active, the corresponding arcs
are all retained in the dependency graph of ∆M.

131

(a) (b) (c)

Figure 9.5: (a) A parent of a creation isodiamond in the hierarchy of diamonds (red diamond in
(b)) can be either an active isodiamond (green) or a relevant isodiamond (blue). (b) Since a creation
isodiamond (red) is a local root in the dependency graph of ∆M, its ancestors in the hierarchy of
diamonds are not retained. (c) All children of the creation isodiamond (red triangles) are active.

An active isodiamond δa, by definition, has at least one active duet such that δa is
the parent (unless δa is a leaf in the dependency graph), and at least one active duet such
that δa is the child (unless δa is the root of ∆R). The parents of an active isodiamond δa in
∆R can be either active, creation or relevant isodiamonds:

• All creation isodiamond parents corresponds to active duets and the corresponding
arcs are retained in the dependency graph of ∆M.

• An active isodiamond parent is retained in the dependency graph of ∆M only if the
corresponding duet is active.

• The relevant isodiamond parents in ∆R do not correspond to active duets and are not
retained in ∆M.

Similarly, the children of an active isodiamond δa in ∆R can be either active, creation,
relevant or inactive isodiamonds. The only arcs retained in the dependency graph of ∆M

are those corresponding to an active child diamond δ and to an active duet between δa and
δ.

Recall that, by definition, the spine of an active diamond δa is part of all duets
containing δa as child. If the sign values of the spine differ, all duets containing δa as
child are active, and their corresponding arcs are retained in ∆M. This corresponds to a
diamond whose spine intersects the isosurface or one (or both) of the bounding surfaces
of the interval volume. In addition, when representing interval volumes, all duets are
active if the signs of the spine vertices are both zero, corresponding to a diamond whose
spine is located between the two bounding surfaces. Otherwise, some of the duets could
be inactive. Only the arcs between δa and a parent δ corresponding to active duets are
retained by ∆M. Table 9.1 summarizes the status of ∆M’s dependency graph arcs based on
the isodiamond types of the parent δp and the child δc of a duet dpc.

9.4.3 Data structure
The MI hierarchy is represented in the same way as the RI hierarchy (see Section 9.3.2),
where each modification is encoded using 12 bytes, and each vertex requires a single byte.
Consequently, a model with |mc| creation isodiamonds, |ma| active isodiamonds and |v|

132

Table 9.1: Status of arc in dependency graph of ∆M based on isodiamond types of parent δp (rows)
and child δc (columns) of a parent-child duet dpc. Types {R,C, A, I} denote, respectively, Relevant,
Creation, Active, Inactive.

δp \ δc R C A I

R x x x x

C – – X –

A x x ∗ x

I – – – x

X Always retained
∗ Retained if active duet
x Never retained
– Not possible

isovertices requires

2︸︷︷︸
base mesh

+ 12 ∗ (|ma| + |mc|)︸ ︷︷ ︸
modifications

+ |v|︸︷︷︸
vertices

bytes.

Since the creation isodiamonds are required to initialize the base mesh, for efficiency, we
store the creation isodiamonds separately from the active isodiamonds.

Note that, since active and creation isodiamonds are the only modifications that
contain patches of the output isosurface or interval volume, the MI hierarchy represents
exactly the same set of isovertices (and thus patches) as the RI hierarchy, despite encoding
significantly fewer modifications.

9.4.4 Generating an MI hierarchy
The Minimal Isodiamond hierarchy is generated from a hierarchy of diamonds in a similar
manner as the RI hierarchy (as detailed in Section 9.3.3). The only difference is that when
adding isodiamonds to the model, we must additionally test for the type of isodiamond.
These tests are efficiently carried out by applying bitmasks to the bit pattern of each
diamond. If the bit pattern of a diamond δ is not homogeneous, then δ is an active
isodiamond. If only the sign of the central vertex differs from those of the other vertices,
then δ is a creation isodiamond. Otherwise, the diamond is discarded. In all cases, if the
min/max range of a diamond contains the isovalue or isorange, we recursively test all of
its descendants.

9.4.5 Querying an MI hierarchy
Uniform– and variable-resolution isosurfaces or interval volumes can be extracted from
an MI hierarchy through a similar selective refinement process as the RI hierarchy (as
discussed in Section 9.3.4).

There are, however, two key differences due to the fact that the relevant isodiamonds
are not encoded and due to the changes to the dependency relation in the MI hierarchy.

The first difference concerns the bit pattern of a diamond. Recall that selective
refinement requires a closure operation, that is, all parent modifications of a diamond δ
must be applied before δ can be applied. Moreover, our isodiamond encoding scheme (see

133

(a) Extracted from RI (b) Extracted from MI

Figure 9.6: Diamond mesh Σδ (gray, green and blue triangles) and current mesh Σ (dark blue line
segments) of the 2D bonsai tree dataset (κ = 58) extracted from (a) an RI hierarchy ∆R and (b) an
MI hierarchy ∆M. Observe that the mesh extracted from ∆R covers the entire domain while the
mesh extracted from ∆M only covers the isosurface patches.

Section 9.2) assumes that the entire bit pattern of a diamond can be recovered from its
ancestors. But, in an MI hierarchy ∆M, the parents of an active isodiamond δ are a subset
of the parents of its corresponding isodiamond in the RI hierarchy ∆R. As a consequence,
the sign values of the vertices from an RI parent δr, that is not an MI parent of δ, will not
be available to complete the bit pattern associated with δ. This situation, however, only
occurs in those active isodiamonds in which the two spine vertices have the same sign
value. Since the duet corresponding to the RI parent δr is not active, all of its vertices,
including the two spine vertices of δ, must have the same sign value. Thus, the missing
vertices can be safely assigned the same sign value as the spine vertices.

The other issue is related to the active front when extracting a mesh from an MI
hierarchy ∆M. As in selective refinement from an RI hierarchy (see Section 9.3.4), we
consider an active front C on the dependency graph of ∆M and two meshes: the current
diamond mesh Σδ, i.e., the tetrahedral mesh associated with front C and extracted from
diamonds in ∆, and the current extracted mesh Σ, formed by the triangles (or tetrahedra)
of the currently extracted isosurface (or interval volume) and defined by the patches
intersected by the diamonds in Σδ. Since the relevant isodiamonds are not encoded in ∆M,
the domain Ω of the dataset is no longer covered by the tetrahedra in Σδ (see Figure 9.6b,
where Σδ consists of blue triangles and Σ consists of dark blue line segments). Further,
since ∆M is not necessarily described by a connected dependency graph, C does not need
to be connected. Consequently, the current diamond mesh can be disconnected and is no
longer guaranteed to be conforming (see the interface between the red and purple triangles

134

(a) Before closure operator

(b) After closure operator

Figure 9.7: Subdivision of a creation isodiamond δc can cause the new patches to intersect other
patches of the current mesh as in the overlap between red and blue triangles in (a). However,
applying the closure operator to all children of δc forces the active front to include δc (red and
green triangles in b). The extracted isosurface in (b) is conforming even though its diamond-based
LEB mesh is not (interface between the red and purple triangles in (b)).

135

in Figure 9.7b).
Nevertheless, since isosurface or interval volume patches are only embedded within

active isodiamonds, the current extracted mesh Σ is guaranteed to be conforming as long
as

(a) the interiors of active tetrahedra do not overlap and

(b) face-adjacent tetrahedra are conforming along their shared face if that face intersects
the isosurface or interval volume.

Property (b) is ensured by the patch triangulation cases for each isodiamond as well as by
the closure operation in selective refinement (as long as property (a) is not violated).

Since (unsubdivided) creation isodiamonds do not contain active tetrahedra, property
(a) is not violated if their tetrahedra overlap other tetrahedra in Σδ. However, creation
isodiamonds require a modified subdivision rule to ensure that the above two properties
remain satisfied after their subdivision. Applying the modification associated with a
creation isodiamond δ adds a new disconnected node to the active front C. Since δ is a
root in the dependency graph of ∆M, it has no ancestors and thus, applying the closure
operator to δ does not connect it to its ancestors in the DAG describing the hierarchy of
diamonds ∆. As a consequence, the diamonds in Σδ overlapping the domain of δ will not
subdivide. If any of these diamonds are active (in violation of property (a)), their patches
can overlap (see the red and blue regions of Figure 9.7a).

We solve this by applying the closure operator to each child of δ, i.e. applying all
modifications on which the children depend. The closure operator cascades up on the
dependency graph until (a) the existing front is reached (b) an arc corresponding to a non-
active duet is reached or (c) another creation node (i.e. a local root of the DAG) is reached.
This joins the fronts of δ and the diamonds overlapping its domain (see Figure 9.7b),
and thus Σ satisfies both the above properties, guaranteeing that the extracted meshes
(isosurfaces or interval volumes) are conforming.

9.5 Results

We demonstrate the compactness and efficiency of the two multiresolution isodiamond
models introduced here on We have run experiments on a testbed of over 20 medical,
scientific and synthetic regular volume data sets (in 3D) of dimensions up to 5123 and
summarize the aggregate information and trends. All experiments were performed on a 2
GHz Pentium Core 2 Duo laptop with 4 GB RAM.

Recall that our isodiamond encoding requires twelve bytes per isodiamond and a
single byte for each isovertex. Also, both the RI and the MI hierarchy encode all active
isodiamonds, but the RI hierarchy encodes in addition all relevant isodiamonds, while the
MI hierarchy stores only those relevant isodiamonds that are creation isodiamonds. The
number of creation isodiamonds is typically less than 0.5% of the number of relevant iso-
diamonds (and often significantly less, as shown in columns 5 and 6 in Table 9.2). Further,
since isovertices are only encoded in creation or in active isodiamonds, and both models
encode these diamonds, the MI hierarchy encodes the same number of isovertices as the
RI hierarchy. Our experiments on more than 20 datasets indicate that, when encoding

136

Table 9.2: Comparison between the size and number of elements in the isodiamond hierarchies
(isovertices vi; relevant mr, creation mc and active ma isodiamonds) and those of the mesh at full
resolution (vertices v and triangles or tetrahedra t). Data structures sizes are listed in megabytes (1
MB = 10242 B).

Isodiamond Hierarchies Indexed Data Structure Sizes (MB) Comparison

Dataset |vi| |mr| |mc| |ma| |v| |t| MI RI Indexed RI / MI

Is
os

ur
fa

ce

Bucky.32{128} 20.2 k 4.74 k 84 7.96 k 16.4 k 32.6 k 0.11 0.16 0.56 1.48 x
Fuel.64{7.2} 23.5 k 5.72 k 5 9.93 k 18.2 k 36.3 k 0.14 0.20 0.62 1.48 x

Neghip.64{59.1} 56.3 k 14.9 k 17 24.5 k 43.1 k 86.1 k 0.33 0.51 1.48 1.51 x
Armadillo.12{0} 62.3 k 19.4 k 5 27.5 k 47.0 k 93.9 k 0.37 0.60 1.61 1.59 x

Hydrogen.128{24} 75.8 k 29.5 k 1 33.6 k 56.9 k 114 k 0.46 0.79 1.95 1.74 x
Tooth.256{650} 11.5 k 73.7 k 21 113 k 195 k 390 k 1.31 2.15 6.70 1.65 x

Armadillo.256{0} 267 k 80.5 k 7 118 k 201 k 401 k 1.60 2.52 6.89 1.57 x
Aneurism.256{128} 271 k 139 k 1.25 k 116 k 216 k 430 k 1.60 3.17 7.39 1.99 x

Bucky128{128} 368 k 97.8 k 97 161 k 279 k 600 k 2.20 3.32 10.1 1.51 x
Bunny 201{0} 671 k 190 k 10 296 k 505 k 1.01 m 4.03 6.21 17.3 1.54 x

Heptoroid.256{0} 844 k 194 k 215 364 k 642 k 1.29 m 4.97 7.20 22.1 1.45 x
Head.256{58} 1.17 m 258 k 623 490 k 884 k 1.77 m 6.73 9.68 30.4 1.44 x

Engine.256{100} 1.39 m 336 k 219 601 k 1.06 m 2.11 m 8.21 12.1 36.2 1.47 x
Bonsai.256{35} 2.06 m 491 k 1.89 k 860 k 1.60 m 3.19 m 11.8 17.4 54.9 1.47 x

Aneurism.512{650} 2.26 m 758 k 3.75 k 971 k 1.74 m 3.48 m 13.3 21.9 59.7 1.65 x
Armadillo.512{0} 1.16 m 343 k 8 513 k 870 k 1.74 m 6.97 10.9 29.9 1.56 x

XMasTree.512{868} 2.55 m 760 k 15.6 k 984 k 2.09 m 4.17 m 13.9 22.4 71.7 1.61 x

In
te

rv
al

Vo
lu

m
e

Bucky32{(118,138)} 40.5 k 4.55 k 65 8.75 k 32.8 k 99.0 k 0.14 0.19 1.88 1.37 x
Fuel.64{(7.2,11.4)} 45.8 k 5.45 k 2 10.8 k 35.3 k 109 k 0.17 0.23 2.07 1.37 x

Neghip.64{(59.1,124.1)} 90.0 k 12.9 k 14 31.7 k 69.0 k 262 k 0.45 0.60 4.79 1.33 x
Armadillo.128{(−10,10)} 179 k 32.4 k 58 101 k 135 k 705 k 1.32 1.69 12.3 1.28 x
Hydrogen.128{(24,48)} 101 k 18.3 k 1 56.9 k 75.9 k 400 k 0.75 0.96 6.97 1.28 x
Tooth.256{(440,1290)} 350 k 68.2 k 1.27 k 182 k 277 k 1.32 m 4.41 5.41 23.3 1.31 x

Armadillo.256{(−10,10)} 585 k 95.0 k 39 335 k 439 k 2.35 m 2.43 3.20 41.0 1.25 x
Aneurism.256{(118,128)} 557 k 144 k 1.34 k 123 k 444 k 1.33 m 4.39 5.48 25.3 1.84 x

Bucky128{(128,188)} 595 k 70.2 k 75 246 k 456 k 2.01 m 1.95 3.58 35.8 1.24 x
Bunny 201{(0,30)} 850 k 127 k 10 488 k 639 k 3.45 m 3.38 4.19 59.9 1.23 x

Heptoroid.256{(−10,10)} 1.40 m 209 k 1.06 k 788 k 1.06 m 5.59 m 6.40 7.85 97.5 1.23 x
Head.256{(42,72)} 2.48 m 199 k 429 1.20 m 1.89 m 9.28 m 10.4 12.7 163 1.14 x

Engine.256{(55,175)} 1.70 m 196 k 130 809 k 1.29 m 6.17 m 16.1 18.3 109 1.21 x
Bonsai.256{(45.5,86.5)} 2.58 m 438 k 3.52 k 864 k 2.03 m 7.08 m 10.9 13.1 131 1.40 x

isosurfaces, the MI hierarchy requires about 65% of the space of a corresponding RI hier-
archy (with a standard deviation of less than 5%). For interval volumes, an MI hierarchy
requires approximately 78% the space of the corresponding RI hierarchy (with a standard
deviation of 8%).

Although the principle goal of multiresolution hierarchies is not compression, we
demonstrate the compactness of the two isodiamond hierarchies by comparing them to
a simple indexed representation of the mesh describing the isosurface S or the interval
volume I at full resolution (see Table 9.2).∗ This representation encodes vertices as three
floating-point coordinates, and triangles, or tetrahedra, through the indices of their three,
or four vertices, respectively. Thus, encoding an isosurface S with |v| vertices and |t|
triangles requires (12 |v| + 12 |t|) bytes, and encoding an interval volume I with |v| vertices
and |T | tetrahedra requires (12 |v| + 16 |T |) bytes.

∗This is a simplified version of the extended IA data structure from Section 8.6 that only supports the
boundary operation for top simplices (triangles and tetrahedra, in 2D and 3D, respectively) and is efficient
for rendering applications.

137

Compared to an indexed representation of the isosurface at full resolution, the RI
hierarchy is approximately three times more compact and the MI hierarchy is about five
times more compact. For interval volumes, the RI hierarchy is approximately eight times
more compact (as reported in [WD08b]), while the MI hierarchy is more than ten times
more compact than the mesh at full resolution. In addition to the space savings, a mesh ex-
tracted from both isodiamond hierarchies also implicitly encodes the adjacencies between
its triangles, or tetrahedra. This is typically required in downstream mesh processing
applications and would require an extra 12 bytes per triangle, or 16 bytes per tetrahedron,
since we would need to use for the output mesh an indexed representation enhanced with
adjacency information among triangles or tetrahedra.

9.5.1 Front-size and extraction times

0%

20%

40%

60%

80%

100%

120%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

Hierarchy of Diamonds RI Hierarchy MI Hierarchy

(a) Front Diamonds - Isosurface

0%

20%

40%

60%

80%

100%

120%

140%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

(b) Extraction Times - Isosurface

0%

20%

40%

60%

80%

100%

120%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

(c) Front Diamonds - Interval Volume

0%

20%

40%

60%

80%

100%

120%

3% 1% 0.3% 0.1% 0.03% 0.01% 0%

(d) Extraction Times - Interval Volume

Figure 9.8: Comparison of relative number of diamonds in the active front (a,c) and extraction
times (b,d) for isosurfaces and interval volumes extracted from the hierarchy of diamonds (blue), RI
hierarchy (red) and MI hierarchy (green). The extraction has been performed at uniform resolution
with a maximum error of ε ∈ {3%, 1%, .3%, .1%, .03%, .01%, 0%} (horizontal axis). All values are
relative to the hierarchy of diamonds (vertical axis). Values are averages across over 20 datasets of
varying sizes and complexity.

One of the key motivations for the isodiamond hierarchies is performing selective
refinement queries efficiently on a multiresolution representation of a specific predeter-
mined isosurface or interval volume. These models enable a quicker extraction of uniform
or variable-resolution output meshes with respect to extracting them from a hierarchy of
diamonds. Moreover, the active front resulting from the MI hierarchy (i.e. the current

138

diamond mesh Σδ) requires only a fraction of the diamonds to reconstruct an equivalent
output mesh as either the original hierarchy of diamonds or the corresponding RI hierarchy.
Thus, queries on an MI hierarchy require less memory at runtime and the resultant output
meshes can be post-processed more efficiently.

Isosurfaces extracted from an MI hierarchy have associated active fronts containing
approximately 25% of the diamonds as in the active fronts extracted from a hierarchy of
diamonds or from an RI hierarchy (see Figure 9.8a). Similarly, interval volumes extracted
from an MI hierarchy have associated active fronts containing approximately 50% of the
diamonds as the other two models (see Figure 9.8c). Note that in these queries, the selec-
tion criterion for the original hierarchy of diamonds ∆ depends on the range of field values
as well as the approximation error, while the selection criterion for the RI hierarchy ∆R and
the MI hierarchy ∆M only depends on the approximation error. Since many isodiamonds
near the root of the dependency graph of ∆R are relevant, but their corresponding diamonds
in ∆ might not intersect the isovalue (or isorange), their modifications will be applied in
∆R but not in ∆. Thus, when allowing a higher error tolerance, ∆R can have a time and
space overhead of around 10-20% compared to ∆. However, this effect is reduced as the
error tolerance decreases, and the active front descends to lower levels of the dependency
graph (e.g. compare the relative values of ∆R and ∆ on the horizontal axes of Figure 9.8
as the error tolerance decreases).

Both isodiamond hierarchies achieve significant reduction in extraction times during
selective refinement, compared to the diamond hierarchy, as the maximum allowed error
decreases (see Figure 9.8 (b) and (d)). Specifically, as ε approaches zero, the RI hierarchy
can extract an equivalent isosurface or interval volume in about 3/4 the time with respect
to the hierarchy of diamonds, while the MI hierarchy can extract an equivalent mesh in
about half the time with respect to the hierarchy of diamonds. Note that, when the error is
high (e.g. the values toward the left side of each graph in Figure 9.8), the extracted meshes
and times are relatively small, and, thus, relative differences are less significant, while for
lower errors (e.g. toward the right side of each graph), the times and active front sizes
increase. This suggests that the hierarchy of diamonds is ideally suited for extracting low
resolution isosurfaces and interval volumes from the model during the exploratory phases
of the analysis of a dataset. Isodiamond hierarchies are better suited for in-depth analysis
once the desired isosurface or interval volume has been determined and higher resolution
approximations are required for inspection and processing.

The left side of Figure 9.9a depicts a zero-error isosurface (κ = 868) containing
approximately two million vertices and four million triangles extracted from the 5123

Christmas Tree dataset. On the right half, the blue points depict the central vertices of
active isodiamonds, and the purple squares coincide with the central vertices of creation
isodiamonds. Figure 9.9c depicts an interval volume (K = [42, 72]) containing 879 K
vertices and 3.3 million tetrahedra extracted from the 128×2562 Visible Male Head dataset
with uniform error less than 1%. The mesh has been clipped along the median plane to
illustrate the sizes of tetrahedra.

The adaptability of the isodiamond models enables location dependent queries in
addition to those defined by approximation errors. Figure 9.9b illustrates a variable-
resolution isosurface (κ = 0) extracted from the Armadillo dataset and focuses the resolu-
tion in a region of interest around the head. The error of any triangle within the box is zero,

139

and the error outside the box can be arbitrarily large. Colors indicate the resolution of
the diamonds framing the triangles. The blue points coincide with the central vertices of
active isodiamonds. Figure 9.9d illustrates a variable-resolution interval volume extracted
from the 2013 Bunny data set (K = [0, 20]), again with a region of interest around the
head. The tetrahedra are shrunken slightly and the model is clipped along a plane in order
to illustrate the cells of the interval volume.

9.6 Discussion

We have developed two efficient mesh-based multiresolution models for individual iso-
surfaces and interval volumes which are extracted from a volume data set described as
a hierarchy of diamonds. Both models exploit the one-to-one correspondence between
diamonds in the hierarchical representation of the field and modifications in the multireso-
lution representation of the extracted isosurface or interval volume.

The Relevant Isodiamond (RI) hierarchy encodes the set of active isodiamonds as
well as their relevant ancestors. Extracted isosurfaces and interval volumes are guaranteed
to be conforming due to the one-to-one correspondence between isodiamonds in the RI
hierarchy and the diamonds of the diamond hierarchy. As demonstrated in Figure 9.8,
current diamond meshes extracted from the RI hierarchy are generated by approximately
the same number of diamonds as those extracted from the diamond hierarchy, in less time.
The faster extraction times are likely due to the pre-calculation of interpolation coefficients
for the patch isovertices during the generation of the RI hierarchy. Since the scalar values
of each diamond’s vertices do not need to be retrieved, the modification corresponding to
an isodiamond can be applied via a single lookup into the isovertex array.

The Minimal Isodiamond (MI) hierarchy encodes all active isodiamonds and only
the subset of relevant isodiamonds that are creation isodiamonds. The dependency rela-
tion R of its modifications forms a forest of DAGs. An MI hierarchy is described by a
dependency graph which is a subgraph of the dependency describing ∆. Since inactive
isodiamonds are not created during mesh extraction, current diamond meshes that result
from selective refinement applied to MI hierarchies are significantly smaller than those
arising from a selective refinement applied to the RI hierarchy.

As indicated in Table 9.2, both models can be encoded quite compactly compared to
an indexed representation of the extracted isosurface or interval volume at full resolution.
However, the primary benefit of these models is that they efficiently support selective
refinement queries, and thus enable the extraction of meshes satisfying an application-
defined error criterion.

Since isodiamond hierarchies only encode the sign field and vertex interpolation
coefficients, and not the higher dimensional simplices, this relative advantage increases
significantly with the dimension of the encoded mesh. Thus, as long as an appropriate set
of lookup tables is defined (as in [BWC04]), the isodiamond representation should lead
to significant savings for higher dimensional simplicial meshes. Furthermore, since an
interval volume encodes the subvolume enclosed between two isosurfaces, and the storage
requirements are related to the number of isovertices on its lower and upper surfaces, an
interval volume with only one boundary surface can be used as an efficient multiresolution

140

(a) Xmas Tree Isosurface (b) Armadillo Isosurface

(c) Head Interval Volume (d) Bunny Interval Volume

Figure 9.9: (a) Full resolution isosurface extracted from 5123 Christmas tree (κ = 868). Purple
squares on right half indicate creation isodiamonds while blue points indicate active isodiamonds.
(b) Isosurface extracted from 5123 Armadillo (κ = 0) using a cubic ROI. Triangle colors indicate
the DAG level of the isodiamonds and the blue points indicate active isodiamonds in the model.
(c) Interval volume (K = [42, 72]) extracted from the Head dataset. The mesh is clipped along the
median plane to show the internal tetrahedra. (d) Region-based LOD on the bunny model (around
the head) with isorange K = [0, 20].

141

volumetric representation of an object.
Here, we have applied isosurface and interval volume cases to the tetrahedra within

each extracted diamond. Given a consistent set of lookup tables defined on the vertex
categories, our framework should work equally well for multiresolution non-manifold
meshes [HSSZ97], multi-material interface reconstruction [JLSW02, BDS+03] or dual
contouring on the tetrahedra or duets within each diamond [Nie08]. We intend to explore
these possibilities in our future work.

The two concepts of supercubes and isodiamonds provide benefits that are mutually
orthogonal to each other. Isodiamonds reduce the cost of irregular updates to a multires-
olution isosurface or interval volume defined on a DMSF. However, the set of active and
relevant modifications (isodiamonds) are defined on a sparse, coherent subset of the nodes
of a full DMSF. Thus, supercubes seem ideal to reduce the geometric overhead of such a
representation. Additionally, since subdivision edges of a diamond can be uniquely identi-
fied with the diamond whose subdivision introduces them, their associated isovertices can
be clustered together to locally. Rather than having a pointer into a global isovertex array,
each supercube can contain a pointer into a global isovertex array, and each isodiamond
can point into a local isovertex array using a smaller offset, thereby significantly reducing
the cost of isodiamond modifications as well.

142

Chapter 10

Hierarchies of balanced hypercubes

Although the focus of this thesis has been on nested simplicial decompositions, there are
many applications of nested hypercubic grids including those based on quadtrees, octrees
and their higher dimensional extensions [Sam06]. Downstream applications typically
require mesh elements to satisfy certain quality constraints related to the shapes of the
elements as well as the rate of adaptivity within the mesh.

Geometric quality constraints can be enforced by using refinement rules that only
generate mesh elements from a small set of acceptable modeling primitives [Bey00]. A
common adaptivity constraint is to ensure that neighboring elements differ in resolu-
tion by at most one refinement level, i.e. the ratio of edge lengths between neighboring
elements can be at most 2:1. This constraint has been considered in many different
application domains, including computational geometry [BEG94, BG06], scientific visu-
alization [EKT01, WKE99] and computer graphics [VHB87] under various terms such
as restricted [VHB87, SS92, RMSS01], smooth [Moo92] and balanced [Moo95, SSB08].
However, different definitions of the term neighbor lead to different balancing restrictions
e.g. two hypercubes can be adjacent along a common vertex, edge, . . . , facet.

In this chapter, we introduce hierarchies of balanced hypercubes defining families
of nested hypercubic meshes with balancing restrictions. Although they do not generate
conforming meshes (as discussed in Section 2.1.1), these hierarchies satisfy the Mul-
tiTessellation (MT) model [DPM97, DM02] as described in Section 2.4. Specifically, the
modifications are defined by the regular refinement of a hypercube into 2d hypercubes,
and we define the direct dependency relation among such modifications to yield balanced
hypercubic meshes.

We provide a formal treatment of the dependency relation among hypercubes in
a nested hypercubic mesh that is necessary to generate balanced hypercubic meshes.
Whereas previous attempts have placed an upper bound on the number of such dependen-
cies [Wei81, Moo95], we identify the exact number and location of all such dependencies.
This framework is general enough to encompass traditional quadtrees and octrees, which
we refer to as unbalanced.

Our analysis stems from a novel reinterpretation of nested hypercubic meshes
through the lens of diamond hierarchies, whereby hypercubes are seen as a special class
of diamonds. In particular, we observe that 0-diamonds have a hypercubic domain, and
thus hypercubic meshes can be seen as non-conforming diamond meshes composed en-
tirely of complete 0-diamonds. Thus, we propose a diamond-based approach to modeling,
encoding and processing balanced hypercubic meshes.

This yields a compact pointerless encoding for balanced hierarchies of hypercubes,
which provides random access to the hierarchical ancestors of each hypercube, and for
their extracted hypercubic meshes. The connection to diamonds also suggests a supercube-

143

(a) Facet-balanced (b) Edge-balanced

Figure 10.1: In a balanced hypercubic mesh, the neighbors of a node at refinement level ` (red)
can be at level ` − 1 (blue), ` (red or green) or ` + 1 (orange). A facet-balanced mesh (a) is not
necessarily edge-balanced, but an edge-balanced mesh (b) is always facet-balanced.

based representation for encoding the vertices and cells of a balanced 2d-tree mesh. The
coherence among neighboring cubes is exploited through the use of an implicit clustering
scheme based on supercubes (Chapter 5).

Although the cells of a 2d-tree are all cubic, the vertices of a nested hypercubic
mesh cover the entire domain, and thus, the supercube-based DMSF model of Chapter 7
is applicable when associating information with the vertices of a 2d-tree.

Finally, we introduce a dimension–independent algorithm for triangulating nested
hypercubic meshes. Our algorithm is based on a local diamond-based triangulation of each
hypercube (see Section 10.3). As this algorithm is based on regular simplex bisection, the
triangulation has guaranteed geometric and adaptivity constraints. Compatibility between
adjacent hypercube triangulations is implicitly enforced and the complexity of the mesh
is bounded by a multiplicative constant (assuming a fixed dimension).

10.1 Hypercube hierarchies

Recall from Section 3.1.2 that applying regular refinement to a hypercubic domain gener-
ates nested hypercubic meshes. The containment relation of hypercubes can be modeled
as a 2d-tree, in which the 2d sibling hypercubes generated by refining a parent node are
the children of that node. The leaves of this tree (the hypercubes without children) define
the cells of the hypercubic mesh.

10.1.1 Balanced refinement
As was the case for simplex hierarchies, the unrestricted refinement of a hypercube can
lead to meshes with undesirable qualities. A common compromise is to restrict the degree
of refinement in such a way that adjacent hypercubes are at most one refinement apart.
The characteristics of such meshes depend on the type of adjacency relationships that we
wish to restrict.

Recall from Section 2.1 that two d-cubes h1 and h2 in a nested hypercubic mesh are
k-adjacent, 0 ≤ k < d, if their intersection (h1 ∩ h2) defines a k-cube on the boundary
of h1 or h2. They are k-neighbors if they are k-adjacent, but not (k + 1)-adjacent. A

144

nested hypercubic mesh C is said to be j-balanced if all k-neighbors, j ≤ k ≤ d differ in
refinement level by at most one [Moo95]. Observe that for 0 ≤ j < k ≤ d, any j-balanced
hypercubic mesh is also k-balanced [Moo95] (see Figure 10.1). Since the only d-neighbor
of a d-cube is itself, all nested hypercubic meshes are d-balanced. Given a k-balanced
hypercubic mesh, its j-balanced counterpart, j ≤ k, is uniquely defined, and can be
generated by using a simple greedy algorithm [Moo95].

For simplicity, we will refer to 0-balanced as vertex-balanced; to 1-balanced as edge-
balanced; to (d−1)-balanced as facet-balanced; and, finally, to d-balanced as unbalanced.

10.1.2 Balanced hypercube hierarchies

Consider the collection� of all hypercubes at level ` ≤ N, generated by applying reg-
ular refinement to a hypercubic domain Ω. The k-balancing restriction induces a direct
dependency relation among the cells of� , where the refinement of a d-cube hc at level
` depends on that of a d-cube hp at level (` − 1) if hc and hp are k-neighbors in some
hypercubic mesh. Recall that for 2d-trees, the hypercube hp whose refinement generates a
hypercube hc is referred to as its parent, which we denote as Parent(hc), while the 2d cubes
generated during the refinement of hp are referred to as its children, which we denote
as Children(hp) and refer to as siblings in the 2d-tree. The direct dependency relation
in a hierarchy of k-balanced hypercubes, for a node h at level ` is defined by a set of
immediate predecessors at level `− 1 in� , which include Parent(h), on which h depends
for k-balanced refinement, as well as a set of immediate successors at level ` + 1 in� ,
which include Children(h), whose k-balanced refinement depend on h. The collection�
of hypercubes, along with the dependency relation induced by the k-balancing restriction
defines a multiresolution model that we refer to as a hierarchy of k-balanced hypercubes.

We now use properties of regular hypercubic refinement to analyze the various types
of neighbor-balancing dependencies in a hierarchy of balanced hypercubes. For example,
since all 2d sibling cubes are generated at the same time, neighbors along these faces can
never be at a lower resolution (see Figures 2.4).

Let us consider Neighbors(hp), the 3d neighbors of a cube hp at the same level of
resolution as well as Children(hp), the 2d cubes generated by the refinement of hp (see
Figure 10.2, where hp is the red square, Neighbors(hp) contains hp and its adjacent blue
and green squares, and Children(hp) are the four squares below hp at the next level of
resolution). Observe that each cube in Neighbors(hp) is offset from hp along one of the
axis-aligned directions in Rd. That is, if ~f is the offset from the midpoint of hp to the
midpoint of a cube in Neighbors(hp), then ~f = sp · ~g, where gi ∈ {−1, 0, 1}, and sp is the
side length of hp. Of the 3d elements in Neighbors(hp),

(
d
k

)
· 2d−k are k-neighbors of hp.

Furthermore, the midpoints of the edges connecting each neighbor to hp coincide with
the vertices of Children(hp) (see Figure 10.2). Thus, there is a one-to-one correspondence
between cubes in Neighbors(hp) and vertices in Children(hp).

Although the cubes in Neighbors(hp) define the set of all possible balancing neigh-
bors of a cube h ∈ Children(hp), it is not necessary to refine all of these cubes to maintain a
k-balanced hypercubic mesh upon the refinement of h. In fact, since h only has 2d vertices,
and each element of Neighbors(hp) is associated with a single vertex of Children(hp), the

145

(a) Unbalanced dependencies (b) Edge-balanced dependencies

(c) Vertex-balanced dependencies (d) All dependencies among the siblings

Figure 10.2: A hypercube (gray) depends on its immediate predecessors, a subset of the same-
sized neighbors of its parent (red), for k-balanced refinement. A hypercube in an unbalanced
hierarchy depends only on its parent (a), while those in a j-balanced hierarchy also depend on
the same-sized k-neighbors of its parent, where j ≤ k ≤ d. 1-balanced dependencies include
the edge-neighbors (blue, in (b)), while 0-balanced dependencies include the vertex neighbors as
well (green in (c)). The set of dependencies for all sibling hypercubes (gray) is a subset of the 3d

same-sized neighbors (d) surrounding their common parent hypercube (red). Note the one-to-one
correspondence between vertices of the sibling nodes and neighbors of the parent.

(a) Starting Mesh (b) Unbalanced (c) Edge-balanced (d) Vertex-balanced

Figure 10.3: Balanced refinement of a hypercube (gray square in (a)) following the k-balanced
dependency relation (see Figure 10.2). (a) Original mesh. (b) Unbalanced refinement. (c) Edge-
balanced refinement. (d) Vertex-balanced refinement in 2D.

146

number of immediate predecessors of h is at most 2d. Due to the regular refinement, only
the

(
d
k

)
elements of Neighbors(hp) which share a vertex with h are possible k-neighbors of h.

Thus, each cube h ∈� has
∑d

i=k

(
d
i

)
immediate predecessors in a k-balanced hypercube

hierarchy. In particular, the number of immediate predecessors is

• 2d for vertex-balanced hierarchies;

• (2d − 1) for edge-balanced hierarchies;

• (d + 1) for facet-balanced hierarchies; and

• 1 for unbalanced hierarchies.

Note that only the unbalanced hierarchy defines a containment relation.
Figure 10.2 illustrates the dependency relations of a hypercube in unbalanced (Fig-

ure 10.2a), edge-balanced (Figure 10.2b), and vertex-balanced (Figure 10.2c) hypercubic
hierarchies (in 2D). Figure 10.3 illustrates the portion of a nested hypercubic mesh (i.e.
quadtree) obtained by refining a square (gray square in Figure 10.3a) according to unbal-
anced (Figure 10.3b), edge-balanced (Figure 10.3c) and vertex-balanced (Figure 10.3d)
refinement.

10.2 Encoding hypercube hierarchies and their extracted meshes

In this section, we propose a compact pointerless encoding for hypercube hierarchies and
for their extracted nested hypercubic meshes that is inspired from the diamond hierarchy
encoding of Chapter 6. We consider a regularly sampled d-dimensional hypercubic domain
Ω covering an integer grid of (2N + 1)d samples, where N is the maximum level of
resolution, and the samples have integer coordinates in the range [0, 2N].

Our encoding for k-balanced hypercubic hierarchies (which can also be d-balanced
and thus unbalanced) and their extracted meshes is based on the observation that the hyper-
cubes in a hypercubic hierarchy are in one-to-one correspondence with the 0-diamonds in
a hierarchy of diamonds (see Section 4.4). This is also true for nested hypercubic meshes,
where the correspondence is with the 0-diamonds in a diamond mesh. Due to the coher-
ence among cells of the hypercubic mesh, we utilize supercube clustering to reduce the
storage requirements. We first briefly review the encoding from Chapter 6 and highlight
differences for hypercube hierarchies and their extracted meshes.

10.2.1 Encoding hypercubes
Our encoding for hypercubes depends on three quantities: the scale γ, the type τ and the
supercube origin s. These can be efficiently extracted from the binary representation of
the unique midpoint of a hypercube through bit shifting operations.

147

00
00

01

10

11

01 10 11

(a) Supercube encoding

00

11

11

(b) Hypercube as offset

Figure 10.4: A supercube s indexes 2d sibling hypercubes that are generated concurrently (circles
in (a)). Each hypercube type τ can be interpreted as an offset from the origin (square in lower left
corner) of a supercube (b).

Let

vc =


x1 = x1

1 x2
1 . . . xm−1

1 xm
1 τ1

1 1 00 . . . 0

x2 = x1
2 x2

2 . . . xm−1
2 xm

2 τ1
2 1 00 . . . 0

...

xd = x1
d x2

d . . . xm−1
d xm

d︸ ︷︷ ︸
s

τ1
d 1︸︷︷︸
τ

00 . . . 0︸ ︷︷ ︸
γ



T

(10.1)

be the binary representation of the midpoint vc of a hypercube h ∈� .
The scale γ of h is encoded by the number of trailing zeros among the coordinates xi

of vc (see γ in Equation 10.1). In contrast with the level ` of h, which encodes the length
of a path from the root hypercube of � to h, the scale γ of h encodes the length of a
path from h to the leaf nodes of� . The level and scale are therefore related through the
predetermined maximum resolution N as ` = N − γ.

The two bits at position γ + 1 and γ + 2 of each coordinate xi of vc uniquely encode
the type τ of h. Since h corresponds to a 0-diamond in a hierarchy of diamonds, the
rightmost bits of τ (i.e. the bits in position γ + 1 of each coordinate) will all be 1.

Finally, the remaining m bits in each coordinate correspond to the origin (i.e. the
lower left corner) of the supercube indexing h as well as its siblings (see Figure 10.4).
Observe that the supercubes at each scale γ define a regular grid of resolution 2γ+2. If we
consider the coordinates of the midpoints of all 2d siblings of h, the only difference will
be in the leftmost bits of τ (i.e. the bits in position γ + 2 of each coordinate). Thus, the d
bits τ1

i provide an implicit index on the 2d siblings within a supercube.
Offsets to the midpoints of a cube’s faces can be determined as scaled offsets from

its midpoint. Let hi be an i-face of a cube h. Then, the offset ~g = 2γ · ~f from the midpoint
vc of h to the midpoint vi of hi will contain (d − i) non-zero components. I.e.

vi = vc + 2γ · ~f , (10.2)

148

where the components f j ∈ {−1, 0, 1}, and
∑ ∣∣∣ f j

∣∣∣ = (d − i). In particular, the offsets to the
0-faces (vertices) of a cube can be obtained by adding the 2d scaled vectors whose compo-
nents f j are all nonzero, i.e. ~fvertex = (±1,±1, . . . ,±1). These offsets can be precomputed
and stored in a lookup table, or can be generated on demand at runtime.

10.2.2 Encoding dependency relations
The dependency relation of a hypercube h in a hierarchy of hypercubes can also be implic-
itly encoded in terms of scaled offsets from the midpoint of h. Since all nodes in� are
hypercubes, their midpoints will have the same form as Equation 6.1.

Parent. Since the parent hp of a hypercube h is at one level of resolution lower in the
hierarchy, its scale is γ + 1. Thus, the rightmost bit of the supercube origin (i.e.,
position xm in Equation 6.1) of h becomes the leftmost bit of the type τ of hp. The
coordinates of the midpoint of hp can be obtained from those of h by clearing the
rightmost bits of τ in vc (i.e. those at position γ + 1 from the right), and setting the
leftmost bits of τ in vc to 1.

Children. In contrast, the midpoints of the 2d children of h share the leftmost m + 1 bits
as well as the final γ − 1 bits of each coordinate of h. The bits corresponding to the
type τ of a child hc of h will be at positions γ and γ + 1 (from the right). The 2d

children are distinguished by the bits at position γ + 1 of each coordinate, which
take on all 2d possibilities, while the bits at position γ are all set to 1.

Immediate predecessors. Since the immediate predecessors of h are all neighbors of its
parent hp, their scale is γ + 1. They can differ from hp in their supercube origin and
in the leftmost bit of τ.

Recall that the midpoint of each such k-neighbor of hp is located at an offset ~f from
the midpoint vp of hp, and this offset is twice the distance from vp to a vertex of its
child h. Thus, the immediate predecessors of h for k-balancing can be determined
from the k-neighbors of its parent hp. For a k-balanced dependency relation, all such
offsets to the midpoint v′ of an immediate predecessor h′ have the form

v′ = vp + 2γ+1 ~f

where ~f encodes the difference in offsets from vp to a vertex of h, and
∑ ∣∣∣ f j

∣∣∣ ≤ k.

Table 10.1 summarizes the number of bits in each component of the midpoints of a
hypercubes parents, children and immediate predecessors. In all cases, the type τ is
defined by two bits, of which, the right bit is set to 1. Note that the coordinates of the
midpoint of the parent and the immediate predecessors can differ in supercube origin (s)
as well as in (the left bits of) the type (τ).

10.2.3 Encoding k-balanced hypercubic meshes
We propose a supercube-based encoding for the leaf nodes of a nested hypercubic mesh
extracted from a hierarchy of k-balanced hypercubes. Our encoding will only consider

149

Table 10.1: Number and position of bits in the midpoint coordinates of a cube’s hierarchical
relationships. Compare to Equation 10.1.

Relationship Supercube (left) Type (middle) Scale (right)

Hypercube m 2 γ

Children m + 1 2 γ-1
Parent m − 1 2 γ+1
Predecessor m − 1 2 γ+1

the presence or absence of a hypercube within a mesh (as in Chapter 8), but associating
information with each node is straightforward.

Let Bc be the number of bytes required to encode each coordinate. Using the
encoding from Section 10.2.1, each d-dimensional hypercube can be identified entirely
from the coordinates of its midpoint using (d ·Bc) bytes, so a hypercubic mesh C containing
|h| hypercubes requires |h| · (d · Bc) bytes to encode.

Since all 2d children of a hypercube are generated concurrently during its refinement,
a supercube-based representation for nested hypercubic meshes is able to exploit the
spatial and hierarchical coherence of the regular refinement operation. Furthermore, since
k-neighbors in a j-balanced hypercubic mesh, (0 ≤ j ≤ k < d) are required to be within
one level of refinement, we expect more coherence among the nodes for lower values of j.
A supercube-based representation requires d · Bc bytes to encode the origin coordinates of
all supercubes with at least one hypercube in the mesh C, as well as some bookkeeping to
encode which of its 2d children are actually present in the mesh. For simplicity in encoding
and updating, we assume that we require one bit for each of the sibling hypercubes, for
a total of 2d bits (i.e. 2d−3 bytes) of bookkeeping per supercube. Thus, the cost for
encoding the cells of a supercube-based nested hypercubic mesh defined by |s| supercubes
is: |s| ∗ (d · Bc + 2d−3) bytes. In practice, we store the set of supercubes at each level of
resolution as a separate hash table, and there is some storage overhead related to the load
factor of the hash table (as discussed in Section 7.6).

To evaluate the cost of this representation, we consider three categories of nodes in
a 2d-tree.

I. Leaf nodes of the tree. Each leaf corresponds to a hypercube in the mesh.

II. Internal nodes of the tree with at least one child that is a leaf node.

III. Internal nodes of the tree whose children are all internal nodes.

Given a complete 2d-tree of maximum level or resolution N, the number of leaf nodes (i.e.
type I) is (2d)N , and the number of internal nodes (i.e. types II and III) is (2d)N−1

2d−1 [CLRS01].
The number of internal nodes with leaf children (i.e. type II) is therefore (2d)N−1, while
the number of internal nodes without children (type III) is (2d)N−1−1

2d−1 .
In the classic pointer-based 2d-trees encoding all nodes are represented [Sam06].

Linear quadtrees [Gar82a] do not encode the internal nodes, and thus only encode nodes
of type I, corresponding to hypercubes in the mesh. Our cube-based encoding above is

150

similar to this approach. In contrast, autumnal quadtrees [FM86] encode nodes of type
II and III, that is, each node is encoded in terms of its parent.∗ The proposed supercube-
based representation requires storage for nodes of type II, each of which corresponds to a
supercube in the mesh.

Table 10.2 lists the number of hypercubes |h| (nodes of type I) and supercubes |s|
(nodes of type II) as well as the concentration of the supercube clustering (C = |h|/|s|)
in k-balanced cubic meshes, 0 ≤ k ≤ 3 extracted from volumetric scalar fields using a
range-based query based on a given isovalue as well as a uniform error criterion of 0.
Interestingly, even unbalanced meshes (k = 3) have a very high concentration averaging
more than 7 out of the possible 8 cubes per supercube. As expected, the concentration
increases as the degree of balancing increases (i.e. as k decreases).

We observed (not listed in Table 10.2) that nodes of type III (internal nodes without
children in the mesh) comprise only 2-4% of the internal nodes, and less than 0.5%
of the total nodes. Thus, they do not add a significant overhead to the representation.
However, since we only require the presence or absence of a hypercube for our application,
the pointer-based autumnal representation would incur an overhead of 2d pointers per
supercube instead of 2d bits in our application.

Since our hypercube-based data structure requires 6 bytes per hypercube, and our
supercube-based data structure requires 7 bytes per supercube, and the concentration of
the supercube-based representation is between 7 and 7.5, our proposed supercube-based
pointerless representation requires about 1/6 the storage space as the hypercube-based
pointerless representation for these datasets.

In applications where we need to encode information about the vertices of the
mesh. Such information could be limited to the presence of a vertex, or we could be
encoding scalar values or other information. In general, an 2d-tree mesh will correspond
to a coherent subset of the vertices of a full DMSF. Thus, the partial DMSF model of
Section 7.3 will be a useful representation for our vertices. As was the case with diamond
meshes, for top-down traversals of the hierarchy, vertices are only inserted into the mesh
and are never removed.

10.3 Triangulating nested hypercubic meshes

In this section, we introduce a simple dimension–independent algorithm to triangulate
a nested hypercubic mesh C. Our triangulation algorithm is based on the observation
that 0-diamonds cover a hypercubic domain, and thus, nested hypercubic meshes can
be considered as a special case of (non-conforming) diamond meshes consisting of only
0-diamonds. Our triangulation is based on a local bisection refinement within each hy-
percube of C. This converts C into a conforming RSB mesh Σ covering the domain of C,
i.e. Σ is a simplicial complex defined by a collection of Regular Simplex Bisection (RSB)
simplices. The properties of RSB simplices [Mau95] ensure the quality of the triangu-
lation. Specifically, the simplices in the mesh belong to at most d similarity classes of
well-shaped simplices, and the valence of a vertex is at most 2dd! = (2d)!!.

∗The name is due to the fact that the leaf nodes are ‘dropped’ in this representation [Wil88].

151

Table 10.2: Comparison between nested cubic meshes extracted from k-balanced hypercube hi-
erarchies (0 ≤ k ≤ 3) over volumetric scalar fields, where the selection criterion is based on a
uniform approximation error of 0% error as well as an isovalue κ. For each mesh, we list the
number of hypercubes |h| and supercubes |s| as well as the concentration C.

Dataset Unbalanced Facet-balanced Edge-balanced Vertex-balanced

|h| |s| C |h| |s| C |h| |s| C |h| |s| C

Bunny0 381 K 54.3 K 7.01 439 K 61.5 K 7.14 467 K 64.9 K 7.19 477 K 66.2 K 7.21
Fuel7.2 12.8 K 1.78 K 7.17 14.7 K 2.01 K 7.30 15.3 K 2.08 K 7.34 15.5 K 2.10 K 7.35

Engine100 726 K 103 K 7.07 827 K 115 K 7.21 850 K 117 K 7.24 857 K 118 K 7.25
Buckyball128 215 K 30.3 K 7.08 237 K 33.0 K 7.19 249 K 34.5 K 7.22 252 K 34.9 K 7.23
Armadillo0 155 K 22.1 K 7.01 182 K 25.5 K 7.13 195 K 27.2 7.20 200 K 27.7 K 7.22
Plasma1.2 77.4 K 10.9 K 7.13 82.6 K 11.5 K 7.22 84.4 K 11.7 K 7.24 85.0 K 11.7 K 7.26

Aneurysm128 186 K 26.0 K 7.14 239 K 33.2 K 7.22 268 K 36.8 K 7.28 275 K 37.7 K 7.31
Tooth650 148 K 21.0 K 7.04 170 K 23.8 K 7.16 181 K 25.1 K 7.21 184 K 25.4 K 7.23
Head58 648 K 91.7 K 7.06 748 K 104 K 7.19 784 K 108 K 7.23 791 109 K 7.24

Hydrogen24 50.0 K 7.04 K 7.10 58.5 K 8.14 K 7.19 62.4 K 8.60 K 7.26 63.9 K 8.77 K 7.28
Foot23.5 3.35 M 446 K 7.50 3.47 M 461 K 7.53 3.51 M 466 K 7.54 3.52 M 467 K 7.55
Bonsai35 1.13 M 156 K 7.23 1.26 M 172 K 7.31 1.31M 179 K 7.34 1.32 M 180 K 7.35
Neghip59 32.2 K 4.5 K 7.11 36.4 K 5.05 K 7.21 38.0 K 5.23 K 7.25 38.3 K 5.28 K 7.25

Heptoroid0 475 K 66.6 K 7.14 529 K 73.4 K 7.20 558 K 77.0 K 7.24 567 K 78.2 K 7.25
CT Head650 589 K 82.1 K 7.17 664 K 91.4 K 7.27 691 K 94.6 K 7.30 699 K 95.7 K 7.31

Our algorithm consists of three stages. First, we edge-balance the mesh (Sec-
tion 10.3.1). This ensures that each face of a hypercube within C is refined by at most
one internal vertex (see Figure 10.1). Next, we iterate through the vertices of the edge-
balanced mesh and cache them (Section 10.3.2). This replaces potentially expensive
neighbor-finding operations with a single vertex lookup on each edge of the hypercube.
Finally, we triangulate each hypercube locally using a diamond-based bisection refine-
ment (Section 10.3.3). We conclude with a proof that the generated mesh Σ is a simplicial
complex and find bounds on the complexity of Σ with respect to C. Our algorithm is
summarized in Figure 10.5(a)-(c).

(a) (b) (c) (d)

Figure 10.5: Given an edge-balanced hypercubic mesh (a) we first generate complete 0-diamonds
for each hypercube (b), and then apply our local bisection-based algorithm to each hypercube (c).
Observe that hypercubes that have neighbors at a deeper level of resolution (orange vertices in (b))
need to refine. Compare to a Delaunay-based triangulation (d).

152

(a) Unrefined (b) Refined edge (c) Refined face (d) All edges refined

Figure 10.6: The bisection-based triangulation of a hypercube (shown in 3D) depends entirely
on the refined edges of neighboring hypercubes. The triangulation ranges from a that of a Kuhn-
subdivided cube (a) to that of a fully-subdivided cube (d).

10.3.1 Mesh balancing
Let C be a (variable-resolution) nested hypercubic mesh obtained through regular refine-
ment of an initial hypercubic domain Ω.

For our triangulation algorithm, we require C to be an edge-balanced nested hyper-
cubic mesh. This ensures that the faces of each hypercube need to be refined at most once,
as well as the quality of the generated elements. Otherwise, the edges of its cubes might
require more than one refinement, as can be seen in Figure 10.1a, where the edge of the
blue cube (at level ` − 1) adjacent to the orange cube (at level ` + 1) has more than one
internal vertex.

If the input mesh Cin is not edge-balanced, we can convert it to an edge-balanced
mesh C in a bottom-up manner by following the direct dependency relation of the edge-
balanced hypercube hierarchy (as introduced in Section 10.1.2). Note that this increases
the number of hypercubes in the mesh by at most a constant factor (assuming a fixed
dimension d) [Wei81, Moo95], and is uniquely defined [Moo95].

10.3.2 Vertex caching
Our local triangulation algorithm only refines hypercube edges that have at least one
smaller edge-neighbor. Since hypercubes can have many edge-neighbors, neighbor-
finding operations can be cost-prohibitive at runtime. However, since C is edge-balanced,
any refined neighbors of a hypercube h along an edge e will contain a vertex located at the
midpoint vm of e (see Figures 10.1b and 10.5a). Once we determine if vm exists in C, we
no longer require these neighbor-finding operations.

We therefore cache the vertices of C in a hash-table, (see Algorithm 10.1). Since
each d-cube contains 2d vertices, the cost of this step on a mesh with |h| hypercubes is
O(2d · |h|), and the average cost of each vertex lookup is O(1).

10.3.3 Hypercube triangulation
Our triangulation algorithm (see Algorithm 10.2) generates a globally conforming RSB
mesh Σ through a local triangulation Σh of each hypercube h ∈ C. This triangulation is

153

Algorithm 10.1 CacheVertices(C)

Require: C is an edge-balanced nested hypercubic mesh.
Ensure: Vertices(C) is a spatial index on the vertices of cubes in C.

1: Vertices(C)← ∅.
2: for all hypercubes h ∈ C do
3: for all vertices v ∈ h do
4: Insert v into Vertices(C).

Algorithm 10.2 TriangulateHypercubicMesh(C)

Require: C is an edge-balanced nested hypercubic mesh.
Require: Vertices(C) contains all vertices of hypercubes in C.
Require: Σh is an RSB mesh covering hypercube h ∈ C.
Ensure: Σ =

⋃
h∈C
{Σh} is a conforming RSB mesh covering C.

1: for all hypercubes h ∈ C do
2: Σh ← ∅.
3: Let δh be the 0-diamond corresponding to h.
4: Insert δh into Σh.
5: for all edges e ∈ h do
6: Let vertex v be the midpoint of e.
7: if v ∈ Vertices(C) then
8: Let δe be the (d − 1)-diamond associated with edge e.
9: Insert δe into Σh.

10: LocalRefineDiamond(δe,Σh, h).

entirely determined from a hypercube’s refined edges.
We first convert each hypercube h ∈ C to an RSB mesh Σh defined by the 0-diamond

associated with h (lines 2–4 of Algorithm 10.2). Since this is a Kuhn-subdivision of h (see
Section 4.4), it contributes d! simplices to Σh. See Figure 10.6a for an example in 3D.

For each edge e ∈ h that is refined in a neighboring hypercube, we add the (d − 1)-
diamond δe associated with edge e to Σh, and locally refine δe within Σh. As mentioned
in Section 10.3.2, we can determine the refined edges of a hypercube by checking if the
midpoint of each edge is a vertex in C (lines 6–7).

The function LocalRefineDiamond(δe, h) (Algorithm 10.3) ensures that all diamond
ancestors of δe whose central vertex intersects h (up to δh) are added to Σh. This satisfies
the transitive closure of the diamond dependency relation, restricted to the domain of h, of
each refined edge of h (see [WD09a] for more details).

Figure 10.6 shows some possible triangulations Σh of a 3-cube h. In Figure 10.6a,
none of the edges of h are refined, so Σh is defined by the 0-diamond associated with h
and contains d! simplices. This implies that all edge-neighbors of h in C are at the same
level of refinement or one level higher in the hierarchy.

In Figure 10.6b one of the edges (red) of h is refined. The two facets of h adjacent
to this edge are refined in Σh, as is the center of h. This triangulation occurs when a single

154

Algorithm 10.3 LocalRefineDiamond(δ,Σh, h)

Require: The domain of diamond δ intersects h.
Require: Σh is a conforming RSB mesh restricted to the domain of hypercube h.
Ensure: δ is refined in Σh.

1: for all diamonds δp ∈ Parents(δ) do
2: Let vp be the central vertex of δp.
3: if δp is not refined and vp ∩ h , ∅ then
4: LocalRefineDiamond(δp,Σh, h).
5: // Refine δ by bisecting all of its simplices within Σh

6: RefineDiamond(δ,Σh).

edge-neighbor of h that is not a facet-neighbor, is refined.
Figure 10.6c illustrates the triangulation Σh when all four edges along a facet of h

are refined. This corresponds to the case where a facet-neighbor of h is refined.
Figure 10.6d illustrates the triangulation Σh of h when all edge-neighbors of h are

refined. Σh is a fully-subdivided hypercube, and is defined by 2d · d! simplices. Observe
that all faces of h in Σh are refined.

The following Theorem proves that Algorithm 10.2 always produces a simplicial
complex. Furthermore, the complexity of the generated mesh Σ with respect to the input
hypercubic mesh C is bounded by a constant that depends only on the dimension d of the
domain.

Theorem 10.3.1. Given an edge-balanced hypercubic mesh C defined by |h| hypercubes,
Algorithm 10.2 generates a conforming RSB mesh Σ =

⋃
h∈C
{Σh} and is defined by |σ| RSB

simplices, where |h| · d! ≤ |σ| < |h| · 2d · d!

Proof. To show that Σ is conforming, we need to prove that (a) the triangulation Σh of each
hypercube h is locally conforming, and (b) the boundaries Σh ∩ Σh′ between neighboring
hypercubes h and h′ are also conforming.

The first constraint is satisfied since diamond refinement always generates a con-
forming RSB mesh. The function LocalRefineDiamond(δe, h) can be viewed as the trian-
gulation of the root diamond in a hierarchy of diamonds after some of its edges have been
refined.

The second constraint relies on the edge-balancing constraint of the input mesh
C, as well as the properties of Kuhn-subdivided and fully-subdivided hypercubes (see
Chapter 4). Note that, vertex-adjacent hypercubes that are not edge-adjacent are always
conforming since their intersection is a vertex.

We first consider the case where the two neighboring hypercubes h and h′ are
at the same level of refinement. Since opposite pairs of lower dimensional faces of a
Kuhn-subdivided hypercube are conforming, unrefined faces of neighboring hypercubes
at the same resolution are conforming. Next, since our refinement rule in Algorithm 10.2
depends on the closed refinement of the edges, the lower dimensional faces in h ∩ h′ are
guaranteed to bisect in Σh and Σh′ , i.e. the parents of a diamond δe associated with edge e,
restricted to h ∩ h′ will be identical for Σh and Σh′ .

155

Finally, if h and h′ are not the same size, assume, without loss of generality, that the
level of h is ` and that of h′ is (` + 1). Due to the edge-balancing constraint on C, it is not
possible for faces of h′ that belong to h ∩ h′ to be refined. Thus, the only cases we need to
consider are the refinement of faces of h in h ∩ h′. Since the edges in h ∩ h′ are refined by
Algorithm 10.2, all higher dimensional faces are refined as well.

We conclude the proof by discussing the complexity of Σ. Let |h| be the number of
hypercubes in C and |σ| be the number of simplices in Σ. Since Σh minimally contains
the d! simplices obtained through a Kuhn-subdivision of h (i.e. the simplices in its cor-
responding 0-diamond), the lower bound on |σ| is |h| · d! simplices. This lower limit is
obtained when C is a uniform resolution hypercubic mesh.

Similarly, since each edge (i.e. the (d − 1)-faces) of a hypercube in C can be refined
at most once, all j-faces, j < (d − 1), can be refined at most once. Thus, each local trian-
gulation Σh, in the worst case, is a fully-subdivided hypercube. Σh therefore contributes at
most 2d · d! simplices. This gives an upper bound on |σ| of |h| · 2d · d!. This upper bound is
not tight since it is not possible for all edges of all hypercubes within a hypercubic mesh
to be refined at the same time. �

10.3.4 Results
As a proof of concept, we demonstrate the bisection-based algorithm of Section 10.3 in
an adaptive 3D isosurfacing application. We compare triangulations extracted from edge-
balanced cubic meshes using bisection-based and Delaunay-based triangulations as well
as triangulations extracted from a corresponding hierarchy of diamonds (see Table 10.3).
In each case, C is a nested hypercubic mesh (in 3D), Σh is its associated bisection-based
triangulation (extracted using Algorithm 10.2), Σp is its associated Delaunay-based trian-
gulation (using the Algorithm of Plantinga and Vegter [PV07]) and Σd is a diamond-based
RSB mesh extracted from a corresponding hierarchy of diamonds using the same extrac-
tion criteria. In all cases, the error associated with a cube or a diamond is the maximum
interpolation error (computed using barycentric interpolation on its simplicial decomposi-
tion) among the points within its domain.

Recall that in the Delaunay-based triangulation of [PV07], Steiner vertices are in-
serted at the midpoint of every cube, but no additional vertices are added to their faces.
In contrast, our bisection-based triangulation only adds Steiner points to cubes that have
a smaller edge-neighbor, but can also add Steiner points to a hypercube’s faces. As we
can see from Table 10.3, the overhead of our algorithm in the 3D case compared to the
Delaunay-based triangulation (in terms of the number of vertices and tetrahedra) is approx-
imately 10%. However, since the bisection-based algorithm generates conforming RSB
meshes that satisfy the direct dependency relation of a hierarchy of diamonds, they can be
efficiently encoded as diamond meshes, requiring O(|δ|) space, rather than as irregular sim-
plicial meshes, requiring O(|σ|) space. Furthermore, while our bisection-based algorithm
is defined in a dimension–independent manner, there would be difficulties in generalizing
the Delaunay-based algorithm to higher dimensions. For example, a four-dimensional
version of the Delaunay-based algorithm would require explicit triangulation cases for the
different edge refinement configurations of the cubic faces of a 4-cube.

From Table 10.3, we see that nested cubic meshes C require approximately 66%

156

Table 10.3: Number of vertices |v|, primitives (cubes |h| or diamonds |δ|), and tetrahedra |σ| in
variable resolution meshes extracted from scalar fields of maximum resolution N (i.e., datasets
defined by (2N + 1)3 samples). For each dataset, C is an edge-balanced nested hypercubic mesh, Σh

is a conforming diamond mesh generated from C using Algorithm 10.2, Σp is the tetrahedral mesh
extracted from C using the Delaunay-based triangulation algorithm of Plantinga and Vegter [PV07]
and Σd is a diamond mesh extracted from the corresponding hierarchy of diamonds.

Dataset N Mesh type
Vertices Primitives Tetrahedra
|v| |h| or |δ| |σ|

Fuel 6

C 20.0 K 15.3 K -
Σh 37.5 K 43.7 K 218 K
Σp 35.3 K - 206 K
Σd 26.7 K 23.2 K 87.5 K

Hydrogen 7

C 82.2 K 62.4 K -
Σh 156 K 187 K 928 K
Σp 147 K - 853 K
Σd 108 K 93.0 K 357 K

Bunny 8

C 627 K 467 K -
Σh 1.20 M 1.45 M 7.20 M
Σp 1.09 M - 6.43 M
Σd 848 K 735 K 2.73 M

Engine 8

C 1.11 M 850 K -
Σh 2.06 M 2.52 M 12.7 M
Σp 1.97 M - 11.6 M
Σd 1.60 M 1.40 M 5.29 M

Tooth 8

C 241 K 181 K -
Σh 461 K 556 K 2.76 M
Σp 421 K - 2.48 M
Σd 325 K 281 K 1.05 M

Bonsai 8

C 1.69 M 1.31 M -
Σh 2.97 M 3.54 M 17.9 M
Σp 3.0 M - 17.6 M
Σd 2.20 M 1.94 M 7.57 M

Head 8

C 1.04 M 784 K -
Σh 1.99 M 2.39 M 11.9 M
Σp 1.82 M - 10.7 M
Σd 1.38 M 1.20 M 4.20 M

Armadillo 8

C 262 K 195 K -
Σh 513 K 621 K 3.0 M
Σp 458 K - 2.70 M
Σd 349 K 301 K 1.12 M

157

the number of primitives (hypercubes) as their corresponding diamond meshes Σd to
satisfy the same constraints. However, their triangulations Σh generate approximately
2.5 times as many tetrahedra as Σd. We can see this in Figure 10.7, which illustrates a
cubic mesh extracted from the 2013 Bunny dataset (Figure 10.7a) as well as its bisection-
based triangulation (Figure 10.7b), and the diamond mesh extracted from a corresponding
hierarchy of diamonds (Figure 10.7c), for the isosurface depicted in Figure 10.7d.

158

(a) Nested cubical mesh, C (b) Bisection-based triangulation, Σh

(c) Diamond mesh, Σd (d) Extracted isosurface

Figure 10.7: Decompositions of the 2013 bunny dataset (a-c) associated with isovalue κ = 0 (d),
colored by level of resolution. An edge-balanced cubic mesh (a) with error less than 0.3% contains
156K cubes. Its bisection-based triangulation Σh (b) contains 691K diamonds. A diamond-based
mesh Σd (c) contains 166K diamonds.

159

Chapter 11

Conclusions

In this thesis, we have introduced several diamond-based approaches for scientific visual-
ization.

Diamond hierarchies of arbitrary dimension. We have formalized the notion of di-
amonds of arbitrary dimension [WD09a] via a constructive combinatorial decomposi-
tion into a Kuhn-subdivided hypercube and the boundary of a fully subdivided hyper-
cube. Previously, diamonds were explicitly defined in two [DWS+97] and three dimen-
sions [GP00, GDL+02], leading to efficient data structures. While the definition of dia-
monds in terms of the simplices sharing a common bisection edge, as well as the diamond
decomposition paradigm have been previously considered in arbitrary dimension [Pas02],
neither a data structure nor an analysis of the combinatorial complexity of these constructs
have been previously proposed. Our definition of diamonds has enabled us to develop
the first closed-form equations for the number of vertices, simplices, parents and children
of a diamond, which we use to define a compact pointerless encoding for hierarchies of
diamonds and for their extracted simplicial complexes.

We have also argued that diamonds are the natural representation for extracting,
representing and processing conforming RSB meshes. Conforming updates to a simplex-
based representations have storage and time complexity that is factorial in the dimension
of the underlying domain, while those to a diamond-based representation have complexity
that is linear in the dimension.

Our combinatorial decomposition also highlights parent-child duets, which are in
one-to-one correspondence with the arcs of the diamond dependency graph, as the fun-
damental building block within conforming RSB meshes. We have demonstrated their
utility in defining a compact encoding for adaptive diamond meshes (Chapter 6), in the de-
velopment of efficient navigation queries on diamond meshes (Chapter 8), and in passing
information, such as isovertices, down the hierarchy during refinement (Chapter 9).

Supercubes: A high-level primitive for RSB hierarchies. We have introduced the
supercube as a high-level primitive for RSB hierarchies [WD08c,WD09b,WD11,YWD11].
In particular, we have enumerated the number of edges, diamonds and vertices in a d-
dimensional supercube as 4d − 2d. As discussed in Section 5.3, supercubes reinforce our
observations about the factorial nature of simplex-based conforming refinements to RSB
meshes and the linear nature of diamond-based conforming refinements. In particular, the
average number of d-simplices per diamond in a d-dimensional supercube is d!, while the
average number of duets per diamond in a d-dimensional supercube is d.

We have demonstrated the effectiveness of supercube-based representations in ex-
ploiting the spatial and hierarchical coherence associated with sparse closed subsets of a

161

hierarchy of diamonds. This has enabled us to define compact efficient data structures for
representing a partial diamond-based multiresolution scalar field (DMSF) and for encod-
ing the RSB mesh associated with an active front of a selective refinement query. This
solves a long-standing problem in the GIS community for efficiently representing sparse,
regularly sampled terrain datasets. We have also demonstrated that many common vol-
umetric datasets are oversampled by a factor of three or more. Thus, the partial DMSF
model can significantly reduce the resources required for processing and analyzing today’s
increasingly large scientific datasets.

Isodiamond hierarchies. We have introduced the Isodiamond Hierarchy [WD08b,WD10b]
framework as a multiresolution model for an isosurface or interval volume embedded
within a DMSF. Isodiamond hierarchies can significantly reduce the storage requirements
and processing times for analyzing and visualizing the features of a multiresolution scalar
field once significant isovalues within the dataset have been discovered. Furthermore, the
minimal isodiamond model achieves a significant reduction in storage space and extraction
times by compensating for the relevant, but empty, ancestors of the intersected diamonds.

Hierarchies of balanced hypercubes. We have also analyzed the hierarchical depen-
dency relation required for extracting k-balanced hypercubic meshes from nested hyper-
cubic meshes generated through regular refinement. An examination of the dependency
relation through the lens of diamond hierarchies was invaluable in our definition of a
multiresolution model for k-balanced hypercubic meshes.

Furthermore, we derived a pointerless encoding for nested hypercubic meshes
from our encoding of diamond hierarchies (Chapter 6), leading to a novel representa-
tion for 2d-trees that incorporates the benefits of pointerless representation (i.e. lin-
ear quadtrees [Gar82a, Gar82b]), with those of leafless representations (i.e. Autumnal
quadtrees [FM86]). Our results on volumetric datasets indicate that even unbalanced
octrees have very high concentration with respect to the supercube clustering (more than
7 out of a possible 8 cubes were retained on average), which increases as the degree of
balancing within the hypercubic mesh increases.

Finally, we introduced a diamond-based triangulation for nested hypercubic meshes
[WD10a] and proved bounds on the sizes of these triangulations. Specifically, the RSB
triangulation of each hypercube lies somewhere between that of a Kuhn-subdivided hyper-
cube and a fully-subdivided hypercube. This leads to an overall inflation factor of between
d! and (2d)!! simplices in the corresponding RSB mesh for each d-cube in the original
mesh. Since the triangulation is a conforming RSB mesh, a diamond-based representation
of this mesh is significantly more compact than a simplex-based representation.

11.1 Three families of nested RSB meshes

Supercubes highlight the distinction between the three families of RSB meshes discussed
in this thesis.

The simplex-based representation is defined over the containment hierarchy induced
by RSB operations. It encodes all possible nested RSB meshes achievable by recursively

162

bisecting a simplex in the original Kuhn-subdivision of a hypercubic domain Ω. Let us
call the family of meshes generated by simplex bisection S. Then, every mesh Σσ ∈ S can
be generated by applying an adaptive refinement algorithm to K(Ω) (Algorithm 4.1).

The diamond-based representation for RSB meshes is defined over the dependency
relation induced by conforming RSB operations. It encodes all possible conforming RSB
meshes achievable by subdividing diamonds generated from the 0-diamond defined by
the original Kuhn-subdivision of a hypercubic domain. Let us call the family of meshes
generated by diamond refinement D. Then, every mesh Σδ ∈ D can be generated by
applying a selective refinement algorithm applied to K(Ω) (Algorithm 4.2).

Finally, the hypercube-based representation is defined over the dependency relation
induced by edge-balanced refinement of hypercubes. It encodes the conforming RSB
meshes obtained by triangulating all edge-balanced hypercubic meshes obtained through
regular refinement of a hypercubic domain Ω. Let us call this family of meshes H .
Then, every mesh Σh ∈ H can be generated through a triangulation of an edge-balanced
hypercubic mesh generated from Ω (for example, using Algorithm 10.2).

It has previously been observed in the 2D case thatH ⊂ D [DM02].
Since each diamond subdivision is defined in terms of a set of simplex bisections,

and since the hypercube triangulation scheme is defined in terms of diamond refinements,
the following relationship holds in arbitrary dimension:

H ⊂ D ⊂ S. (11.1)

Note that each relationship defines a proper subset. That is, there exist RSB meshes
that are not conforming (i.e. Σ ∈ S, but Σ < D), as well as conforming RSB meshes that
are not extractable from a triangulated edge-balanced hypercubic mesh. (i.e. Σ′ ∈ D, but
Σ′ < H).

The relative complexities of these three families of RSB meshes is highlighted
through the supercube primitive. Recall that each supercube uniquely indexes:

• 2d · (2d − 1) · d! distinct RSB simplices of order d;

• 2d · (2d − 1) distinct diamond types; and

• 2d distinct hypercube types.

The simplex-based representation is the most powerful, as S contains meshes that
are not conforming in addition to those that are conforming. It is also the most verbose, by
a factor of d!, with respect to the class of conforming RSB meshes. However, a simplex-
based representation can be an ideal representation in applications, such as point location,
that do not require conforming meshes. Alternatively, a lazy refinement evaluation can be
applied to local regions in a non-conforming simplex-based representation when crack-
free representations are required [AM04].

The diamond-based representation is the basis for all conforming RSB meshes. As
all meshes extracted by a selective refinement query on a hierarchy of diamonds, or on a
hierarchy of RSB simplices belong to D, the diamond-based representation is the most
efficient representation for conforming RSB meshes.

163

(a) Σh ∈ H (b) Σd ∈ D (c) Σs ∈ S

Figure 11.1: Minimal RSB triangulations required to generate a given RSB simplex (blue triangle)
for an edge-balanced hypercube hierarchy (a), a hierarchy of diamonds (b) and a hierarchy of
simplices (c). Note that Σd < H since it does not correspond to an edge-balanced hypercubic mesh,
and Σs < D since it is not conforming.

Finally, the hypercube-based representation is the most compact of the three, but
is the least powerful representation. In each level of resolution, a supercube can only
contain 2d elements. Due to the increased granularity, RSB meshes inH are significantly
larger than those inD for the same selection criterion. On the other hand, since there are
many existing implementations of quadtrees, octrees and 2d-trees, the approach outlined
in Section 10.3 can be an easy way of generating high-quality simplicial complexes from
an existing scientific visualization system based on hypercubes. Figure 11.1 illustrates
the smallest member of each family of RSB meshes (in 2D) that contains a given simplex
(blue triangle).

11.2 Future work

Recently, there has been an increasing trend in scientific visualization toward the genera-
tion and interaction with very large time-varying volume data sets. Such data sets are used
as basic tools for analyzing the dynamics and the evolution of phenomena in a variety of
application domains, including medicine, meteorology, astrophysics and engineering.

Time-varying volume data sets are sets of points in the 3D Euclidean space describ-
ing one or more scalar quantity (e.g. pressure, temperature, strength of an electric or
magnetic field) at different instances of time. Approaches to dealing with time-varying
data differ in their treatment of the temporal dimension [WD08a]. Values in local re-
gions tend to change slowly over short intervals of time. This temporal coherence can
be exploited in interactive applications by efficiently encoding these small changes, thus
minimizing storage and retrieval costs. A common metaphor for this approach is that of a
video, where users can gain insight into the dataset by ‘playing’ the discrete snapshots of
the volume over time. Decoupling the spatial and temporal components can be advanta-
geous when the spatial and temporal resolutions differ greatly or where there is a higher
degree of spatial coherence in a local region than there is temporal coherence, or vice
versa. An alternative approach is to treat the temporal and spatial dimensions in a homo-

164

geneous way. Although this approach can be more complex to conceptualize, it offers
several advantages. Since time is assumed to be continuous, smoother animations can be
performed by interpolating the field values. Additionally, the correspondence between
time steps can be exploited to track features over time.

The huge size and complexity of available time-varying data sets poses interesting
challenges for inspecting, analyzing and visualizing such data, as the underlying domain
is typically at a much higher resolution than one which could be interactively processed or
meaningfully analyzed. This naturally leads to the investigation of hierarchical methods
to control and adjust the level of detail of a given data set using a multiresolution model.
This enables reducing the geometry in less ‘interesting’ areas and allows users to focus on
a region of interest, thus achieving lower storage costs and better performance.

We believe that a four-dimensional diamond hierarchy would significantly aid in
the analysis and visualization of time-varying volumetric data. This would be a natural
extension of our work. Supercubes could be used to process the hierarchy, to define the
geometric and hierarchical relationships among the elements of the model and to encode
its extracted meshes. Due to the large size of such datasets, an isodiamond hierarchy could
be used to analyze its isosurfaces and interval volumes offline, or on less powerful work-
station, once the interesting cases have been identified. Finally, a duet-based algorithm
could be defined to efficiently navigate the connectivity of its extracted meshes.

165

Appendix A

Double factorial

The factorial of a positive number n ∈ N, denoted n!, is recursively defined as:

n! =

n · (n − 1)! n > 1
1 n = 1.

It is the product of all natural numbers from 1 to n.

n! =

n∏
i=1

i.

The double factorial function [Mes48], denoted n!!, is recursively defined as:

n!! =

n · (n − 2)!! n > 2
1 n ∈ {0, 1}.

For even values, k = 2n, n ∈ N, the double factorial is the product of all even numbers up
to n, i.e.,

k!! = (2n)!! =

n∏
i=1

2i (A.1)

and for odd values, k′ = 2n − 1, n ∈ N, the double factorial is the product of all odd
numbers up to n, i.e,

k′!! = (2n − 1)!! =

n∏
i=1

(2i − 1) (A.2)

From this, we see that
n! = n!!(n − 1)!!

so the factorial function is the product of successive entries in the double factorial function.
Another relationship between factorials and double factorials can be obtained by

separating the terms on the right hand side of Equation A.1

(2n)!! =

n∏
i=1

2 ·
n∏

i=1

i = 2n · n! (A.3)

Thus, the complexity of the double factorial function is Ω(n!) for even numbers k = 2n.
The first few values of (2n)!!, for n = 0, 1, 2, . . ., are thus:

1, 2, 8, 48, 384, 3840, . . .

167

Appendix B

Common terms involving binomials, exponents and
factorials

Table B.1: Common terms involving exponents, factorials and binomials.

n 0 1 2 3 4 5 6

2n 1 2 4 8 16 32 64
Exponential 3n 1 3 9 27 81 243 729

4n 1 4 16 64 256 1,024 4,096
5n 1 5 25 125 625 3,125 15,625

3n − 1 0 2 8 26 80 242 728
4n − 2n 0 2 12 56 240 992 4,032
5n − 3n 0 2 16 98 544 2,882 14,896

n! 1 1 2 6 24 120 720
Factorial n!! 1 1 2 3 8 15 48

(2n)!! = 2nn! 1 2 8 48 384 3,840 46,080(
0
n

)
1(

1
n

)
1 1

Binomial
(

2
n

)
1 2 1(

d
n

)
= d!

n!(d−n)!

(
3
n

)
1 3 3 1(

4
n

)
1 4 6 4 1(

5
n

)
1 5 10 10 5 1(

6
n

)
1 6 15 20 15 6 1

2n 2 4 8 16 32 64
Supercubes 2n · (2n − 1) 2 12 56 240 992 4,032

2n · (2n − 1) · n! 2 24 336 5,760 119,040 2,903,040
2n · (2n − 1) · n 2 24 168 960 4,960 24,192

168

Appendix C

Binomial theorem

C.1 Simplified binomial theorem

In this section, we prove a special case of the binomial theorem,

n∑
k=0

(
n
k

)
· xn−k · yk = (x + y)n (C.1)

for the case where x ∈ N and y = 1.

Theorem C.1.1. Let α, d, i ∈ N, then

d∑
i=0

(
d
i

)
· αd−i = (α + 1)d

Proof. We prove this using induction on d. The base case is satisfied by recalling that(
0
0

)
=

(
d
0

)
=

(
d
d

)
= 1 (C.2)

thus, for d = 0,
∑0

i=0 =
(

0
0

)
· α0 = 1 = (α + 1)0.

For the induction case, we need to show that

d∑
i=0

(
d
i

)
· αd−i = (α + 1)d

implies that
d+1∑
i=0

(
d + 1

i

)
· αd+1−i = (α + 1)d+1.

We can separate the first and last terms of the summand to obtain:

d+1∑
i=0

(
d + 1

i

)
· αd+1−i =

(
d + 1

0

)
· αd+1 +

d∑
i=1

(
d + 1

i

)
· αd+1−i +

(
d + 1
d + 1

)
· α0

Next, we utilize Pascal’s identity(
d + 1

i

)
=

(
d
i

)
+

(
d

i − 1

)
(C.3)

169

on the middle term, and the identity from Equation C.2 on the outer terms to obtain:

d+1∑
i=0

(
d + 1

i

)
· αd+i−i = αd+1 +

d∑
i=1

([(
d
i

)
+

(
d

i − 1

)]
· αd+1−i

)
+ 1

We can then regroup terms as

d+1∑
i=0

(
d + 1

i

)
· αd+i−i =

αd+1 +

d∑
i=1

(
d
i

)
· αd+1−i

 +

 d∑
i=1

(
d

i − 1

)
· αd+1−i + 1


Finally, by reversing Equation C.2, pulling an α out from the left term, and convert-

ing the index i to j = i − 1 on the right term, we obtain:

d+1∑
i=0

(
d + 1

i

)
· αd+i−i = α ∗

(d0
)
· αd +

d∑
i=1

(
d
i

)
· αd−i

 +

 d−1∑
j=0

(
d
j

)
· αd− j +

(
d
d

)
Which, after applying the induction hypothesis, gives us the desired result:

d+1∑
i=0

(
d + 1

i

)
· αd+i−i = α ∗

d∑
i=0

(
d
i

)
· αd−i +

d∑
j=0

(
d
j

)
· αd− j

= α ∗ (α + 1)d + (α + 1)d

= (α + 1) ∗ (α + 1)d

= (α + 1)d+1

�

As a special case, when α = 1, we get the familiar

d∑
i=0

(
d
i

)
= 2d

i.e. that the binomial coefficients of row d of Pascal’s triangle sum to 2d.
Similarly, when α = 2, we obtain the result

d∑
i=0

(
d
i

)
· 2d−i = 3d.

Since a d-cube has 2d−i faces of dimension d − i and there are
(

d
i

)
distinct combinations,

we see that a d-cube has a total of 3d faces.

C.2 Related proof

Here we prove that
∑((

d
i

)
· 2i

)
= 2d · d, which we use in Section 5.2.

170

Theorem C.2.1. Let d, i ∈ N, then

d∑
i=0

(
d
i

)
· 2i = 2d · d.

Proof. This proof is very similar in structure of Proof C.1.1, and uses induction on d.
The base case (d = 0) is satisfied since 2 · 0 = 20 · 0 = 0.
For the inductive case, we assume

d∑
i=0

(
d
i

)
· 2i = 2d · d (C.4)

to prove
d+1∑
i=0

(
d + 1

i

)
· 2i = 2d+1 · (d + 1). (C.5)

Starting with the left side of the above equation, we first separate the first and last
terms from the summand to obtain

d+1∑
i=0

(
d + 1

i

)
· 2i = 0 +

d∑
i=1

(
d + 1

i

)
· 2i + 2(d + 1).

Next, we apply Pascal’s identity (Equation C.3) to separate the binomial coefficient as

d+1∑
i=0

(
d + 1

i

)
· 2i =

d∑
i=1

((
d
i

)
+

(
d

i − 1

))
· 2i + 2(d + 1).

We then separate the two summands involving binomials, change the index in the right
term to j = i − 1, add the initial term (i = 0) of 0 to the first sum and incorporate the final
term (j = d) to the second sum using the 2(d + 1) summand to obtain:

d+1∑
i=0

(
d + 1

i

)
· 2i =

d∑
i=0

(
d
i

)
· 2i +

d∑
j=0

(
d
j

)
· 2(j + 1).

Finally, distributing 2(j + 1) to 2 j + 2 and separating the sums in the second term, we
obtain

d+1∑
i=0

(
d + 1

i

)
· 2i =

d∑
i=0

(
d
i

)
· 2i +

d∑
j=0

(
d
j

)
· 2 j +

d∑
j=0

(
d
j

)
· 2.

After applying the induction hypothesis to the first two terms and the binomial theorem

171

(Theorem C.1.1) to the third term, we obtain our desired result

d+1∑
i=0

(
d + 1

i

)
· 2i = 2d · d + 2d · d + 2d+1

= 2d+1 · d + 2d+1

= 2d+1 · (d + 1).

(C.6)

�

172

Bibliography

[AG79] E. Allgower and K. Georg. Generation of triangulations by reflection. Util-
itas Mathematica, 16:123–129, 1979. 42

[Ago05] M. Agoston. Computer Graphics and Geometric Modeling. Springer, 2005.
9

[Ale30] J.W. Alexander. The combinatorial theory of complexes. The Annals of
Mathematics, 31(2):292–320, 1930. 50

[AM04] F.B. Atalay and D.M. Mount. Pointerless implementation of hierarchical
simplicial meshes and efficient neighbor finding in arbitrary dimensions. In
Proc. 13th International Meshing Roundtable, pages 15–26, 2004. 24, 163

[AM07] F.B. Atalay and D.M. Mount. Pointerless implementation of hierarchi-
cal simplicial meshes and efficient neighbor finding in arbitrary dimen-
sions. International Journal of Computational Geometry and Applications,
17(6):595–631, 2007. 2, 24, 35, 48, 50, 71, 84, 106

[AMP00] D.N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral
meshes using bisection. SIAM Journal on Scientific Computing, 22(2):431–
448, 2000. 23

[Ban70] T.F. Banchoff. Critical points and curvature for embedded polyhedral sur-
faces. American Mathematical Monthly, 77(5):475–485, 1970. 105

[Bän91] E. Bänsch. Local mesh refinement in 2 and 3 dimensions. IMPACT of
Computing in Science and Engineering, 3(3):181–191, 1991. 22, 23

[BDS+03] K. Bonnell, M. Duchaineau, D. Schikore, B. Hamann, and K. Joy. Material
interface reconstruction. IEEE Transactions on Visualization and Computer
Graphics, 9(4):500–511, 2003. 142

[BEG94] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation.
Journal of Computer and System Sciences, 48(3):384 – 409, 1994. 6, 19,
143

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975. 21

173

[Bey95] J. Bey. Tetrahedral mesh refinement. Computing, 55:355–378, 1995. 22,
23

[Bey00] J. Bey. Simplicial grid refinement: On Freudenthal’s algorithm and the
optimal number of congruence classes. Numerische Mathematik, 85(1):1–
29, 2000. 6, 11, 17, 22, 66, 143

[BG06] H. Brönnimann and M. Glisse. Octrees with near optimal cost for ray-
shooting. Computational Geometry, 34(3):182 – 194, 2006. 6, 143

[BGP09] J. Bösch, P. Goswami, and R. Pajarola. Raster: Simple and efficient terrain
rendering on the GPU. In D. Ebert and J. Krueger, editors, EG 2009 - Areas
Papers, pages 35–42. Eurographics Association, 2009. 29

[BKS97] P. Bunyk, A. Kaufman, and C.T. Silva. Simple, fast, and robust ray casting
of irregular grids. In Proceedings Scientific Visualization, pages 30–36,
1997. 105

[Blo00] J. Blow. Terrain rendering at high levels of detail. In Proceedings of the
Game Developers Conference, 2000. 30

[BLS04] D.C. Banks, S.A. Linton, and P.K. Stockmeyer. Counting cases in substi-
tope algorithms. IEEE Transactions on Visualization and Computer Graph-
ics, 10(4):371–384, 2004. 26

[BLV03] L. Balmelli, T. Liebling, and M. Vetterli. Computational analysis of mesh
simplification using global error. Computational Geometry Theory and
Applications, 25(3):171–196, 2003. 31, 39, 63

[BPSC04] R. Borgo, V. Pascucci, R. Scopigno, and P. Cignoni. A Progressive Sub-
division Paradigm (PSP). Proceedings of SPIE, 5295:223, 2004. 37, 39,
74

[BSW83] R.E. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data
structures for regular local mesh refinement. In R. Stepleman, M. Carver,
R. Peskin, W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing,
IMACS, volume 1, pages 3–17. North-Holland, Amsterdam, 1983. 12, 22

[BWC00] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurfacing in higher dimen-
sions. In Proceedings IEEE Visualization, pages 267–273. IEEE Computer
Society, October 2000. 26

[BWC04] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurface construction in any
dimension using convex hulls. IEEE Transactions on Visualization and
Computer Graphics, 10(2):130–141, 2004. 26, 140

[BZX+04] P. Bhaniramka, C. Zhang, D. Xue, R. Crawfis, and R. Wenger. Volume
interval segmentation and rendering. In Proceedings Volume Visualization
Symposium, 2004. 26

174

[CDM+04] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. Se-
lective refinement queries for volume visualization of unstructured tetrahe-
dral meshes. IEEE Transactions on Visualization and Computer Graphics,
10(1):29–45, January-February 2004. 16, 105

[CGG+03a] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. BDAM – Batched Dynamic Adaptive Meshes for high per-
formance terrain visualization. Computer Graphics Forum, 22(3):505–514,
2003. 29, 30, 31, 39

[CGG+03b] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Planet-sized Batched Dynamic Adaptive Meshes (P-BDAM).
In Proceedings IEEE Visualization, pages 147–154. IEEE Computer Soci-
ety Washington, DC, USA, 2003. 39

[CGG+04] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Adaptive tetrapuzzles: Efficient out-of-core construction and
visualization of gigantic multiresolution polygonal models. ACM Transac-
tions on Graphics, 23(3):796–803, 2004. 39

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
algorithms. The MIT press, 2001. 84, 150

[CMM+97] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speed-
ing up isosurface extraction using interval trees. IEEE Transactions on
Visualization and Computer Graphics, 3(2):158–170, 1997. 27, 28

[CNS+06] A. Castelo, L.G. Nonato, M.F. Siqueira, R. Minghim, and G. Tavares. The
Ja

1 triangulation: An adaptive triangulation in any dimension. Computers &

Graphics, 30(5):737–753, 2006. 19

[CQ06] Y.S. Chang and H. Qin. A unified subdivision approach for multi-
dimensional non-manifold modeling. Computer Aided Design, 38(7):770–
785, 2006. 22

[CSA03] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all di-
mensions. Computational Geometry Theory and Applcations, 24(2):75–94,
2003. 25, 26

[dBSvKO97] M. de Berg, O. Schwarzkopf, M. van Kreveld, and M. Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 1997.
19

[DDM+05] E. Danovaro, L. De Floriani, P. Magillo, E. Puppo, D. Sobrero, and
N. Sokolovsky. The half-edge tree: A compact data structure for level-
of-detail tetrahedral meshes. In Proceeding of the International Conference
on Shape Modeling, June, 15-17 2005. 62

175

[DFMP00] L. De Floriani, P. Magillo, and E. Puppo. VARIANT: A system for terrain
modeling at variable resolution. Geoinformatica, 4(3):287–315, 2000. 2

[DH07] L. De Floriani and A. Hui. Shape representations based on simplicial and
cell complexes. In D. Schmalstieg and J. Bittner, editors, Eurographics
2007 - State of the Art Reports, pages 63–87, Prague, 2007. 105, 119

[DIM+11] L. De Floriani, F. Iuricich, P. Magillo, M.M. Mesmoudi, and K. Weiss.
Discrete distortion for 3D data analysis. In L. Linsen, H. Hagen, and
B. Hamann, editors, Visualization in Medicine and Life Sciences (VMLS),
Mathematics and Visualization. Springer Berlin Heidelberg, 2011. 104

[DKT05] M. Desbrun, E. Kanso, and Y. Tong. Discrete differential forms for compu-
tational modeling. In ACM SIGGRAPH 2005 Courses. ACM, 2005. 105

[DL04] L. De Floriani and M. Lee. Selective refinement on nested tetrahedral
meshes. In G. Brunett, B. Hamann, and H. Mueller, editors, Geometric
Modeling for Scientific Visualization. Springer Verlag, 2004. 60

[DM02] L. De Floriani and P. Magillo. Multiresolution mesh representation: Models
and data structures. In M. Floater, A. Iske, and E. Quak, editors, Principles
of Multi-resolution Geometric Modeling, Lecture Notes in Mathematics,
pages 364–418, Berlin, 2002. Springer Verlag. 15, 16, 23, 143, 163

[DM03] L. De Floriani and P. Magillo. Algorithms for visibility computation on
terrains: A survey. Environment and Planning B - Planning and Design,
30(5):709–728, 2003. 105

[DP95] L. De Floriani and E. Puppo. Hierarchical triangulation for multi-resolution
surface description. ACM Transactions on Graphics, 14(4):363–411, Octo-
ber 1995. 11

[DPM97] L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multi-
resolution modeling. In W. Strasser, R. Klein, and R. Rau, editors, Geomet-
ric Modeling: Theory and Practice, pages 302–323. Springer-Verlag, 1997.
2, 15, 30, 62, 143

[Dur88] M.J. Durst. Letters: Additional reference to marching cubes. Computer
Graphics, 22(2):72–73, 1988. 25

[DWS+97] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich, and
M. B. Mineev-Weinstein. ROAMing terrain: Real-time Optimally Adapting
Meshes. In R. Yagel and H. Hagen, editors, Proceedings IEEE Visualization,
pages 81–88, Phoenix, AZ, October 1997. IEEE Computer Society. 2, 23,
29, 33, 34, 39, 48, 50, 161

[Ede80] H. Edelsbrunner. Dynamic data structures for orthogonal intersection
queries. Technical report, Institut für Informationsverarbeitung, Tech. Univ.
Graz, 1980. 27

176

[EHK+06] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-
time volume graphics. AK Peters Ltd, 2006. 105

[EHNP03] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
complexes for piecewise linear 3-manifolds. In Proceedings 19th ACM
Symposium on Computational Geometry, pages 361–370, 2003. 105

[EHZ03] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale
complexes for piecewise linear 2-manifolds. Discrete and Computational
Geometry, 30(1):87–107, 2003. 105

[EKT97] W. Evans, D. Kirkpatrick, and G. Townsend. Right triangular irregular
networks. Technical Report TR97-09, University of Arizona, Tucson, AZ,
USA, 1997. 28

[EKT01] W. Evans, D. Kirkpatrick, and G. Townsend. Right-triangulated irregular
networks. Algorithmica, 30(2):264–286, 2001. 2, 6, 23, 28, 39, 48, 50, 84,
106, 143

[EM94] H. Edelsbrunner and E.P. Mucke. Three-dimensional alpha shapes. Trans-
actions on Graphics, 13:43–72, 1994. 26

[ESV96] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast
rendering. In Proceedings IEEE Visualization, pages 319–326, 1996. 105

[FM86] F. Fabbrini and C. Montani. Autumnal quadtrees. The Computer Journal,
29(5):472–474, 1986. 151, 162

[FMS95] I. Fujishiro, Y. Maeda, and H. Sato. Interval volume: A solid fitting tech-
nique for volumetric data display and analysis. In Proceedings IEEE Visu-
alization, pages 151–158, Los Alamitos, CA, USA, 1995. IEEE Computer
Society. 26

[FMST96] I. Fujishiro, Y. Maeda, H. Sato, and Y. Takeshima. Volumetric data ex-
ploration using interval volume. IEEE Transactions on Visualization and
Computer Graphics, 2(2):144–155, 1996. 26

[Fre42] H. Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Annals
of Mathematics, 43(3):580–582, 1942. 22, 42, 66

[Gar82a] I. Gargantini. An effective way to represent quadtrees. Communications of
the ACM, 25(12):905–910, December 1982. 84, 150, 162

[Gar82b] I. Gargantini. Linear octtrees for fast processing of three-dimensional ob-
jects. Computer Graphics and Image Processing, 20(4):365–374, 1982. 84,
162

[Gar09] R. Garimella. Conformal refinement of unstructured quadrilateral meshes.
In Proceedings of the 18th International Meshing Roundtable, pages 31–44.
Springer, 2009. 20

177

[GB99] D. M. Greaves and A. G. L. Borthwick. Hierarchical tree-based finite ele-
ment mesh generation. Int’l Journal for Numerical Methods in Engineering,
45(4):447–471, 1999. 19

[GCBB01] M. Gavriliu, J. Carranza, D. Breen, and A. Barr. Fast extraction of adaptive
multiresolution meshes with guaranteed properties from volumetric data. In
Proceedings of IEEE Visualization, pages 295–303, Washington, DC, USA,
2001. IEEE Computer Society. 35

[GDL+02] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy. Inter-
active view-dependent rendering of large isosurfaces. In Proceedings IEEE
Visualization, pages 475–484. IEEE Computer Society Washington, DC,
USA, October 2002. 2, 23, 24, 33, 35, 39, 50, 79, 88, 91, 104, 106, 161

[Ger02] T. Gerstner. Multiresolution extraction and rendering of transparent isosur-
faces. Computers & Graphics, 26(2):219–228, 2002. 24, 33, 39

[Ger03a] T. Gerstner. Multi-resolution visualization and compression of global topo-
graphic data. GeoInformatica, 7(1):7–32, 2003. 32, 39, 48, 93, 102

[Ger03b] T. Gerstner. Top-down view-dependent terrain triangulation using the oc-
tagon metric. Technical report, Institut für Angewandte Mathematik, Uni-
versity of Bonn, 2003. 31, 39, 63

[GG98] R. Grosso and G. Greiner. Hierarchical meshes for volume data. In Pro-
ceedings Computer Graphics International, pages 761–769, 1998. 22

[GG00] G. Greiner and R. Grosso. Hierarchical tetrahedral-octahedral subdivision
for volume visualization. The Visual Computer, 16(6):357–369, 2000. 17,
22

[GG06] T.D. Gatzke and C.M. Grimm. Estimating curvature on triangular meshes.
International Journal on shape Modeling, 12:1–29, 2006. 105

[GH97] M. Garland and P. S. Heckbert. Surface simplification using quadric error
metrics. In Proceedings SIGGRAPH, pages 209–216, 1997. 35, 37

[Gib98] S.F.F. Gibson. Constrained elastic surface nets: Generating smooth surfaces
from binary segmented data. In Medical Image Computing and Computer-
Assisted Interventation (MICCAI), volume 1496 of Lecture Notes in Com-
puter Science, pages 888–898. Springer, 1998. 26

[GK03] A. Greß and R. Klein. Efficient representation and extraction of 2-manifold
isosurfaces using kd-trees. Graphical Models, 66(6):370–397, 2003. 36

[GLE97] R. Gross, C. Luerig, and T. Ertl. The multilevel finite element method for
adaptive mesh optimization and visualization of volume data. In R. Yagel
and H. Hagen, editors, Proceedings IEEE Visualization, pages 387–394,
Phoenix, AZ, October 1997. IEEE Computer Society. 17

178

[GMBP10] P. Goswami, M. Makhinya, J. Bösch, and R. Pajarola. Scalable parallel
out-of-core terrain rendering. In Proceedings Eurographics Symposium on
Parallel Graphics and Visualization, pages 63–71, 2010. 31

[GMBW96] D.M. Greaves, Q.W. Ma, A.G.L. Borthwick, and G.X. Wu. Octree-based
finite element analysis for three-dimensional steep waves. In Proceedings
International Workshop on Water Waves and Floating Bodies, 1996. 19

[GMC+06] E. Gobbetti, F. Marton, P. Cignoni, M. Di Benedetto, and F. Ganovelli.
C-BDAM - Compressed Batched Dynamic Adaptive Meshes for terrain
rendering. Computer Graphics Forum, 25(3):333–342, 2006. 31

[GP00] T. Gerstner and R. Pajarola. Topology-preserving and controlled topology
simplifying multi-resolution isosurface extraction. In Proceedings IEEE
Visualization, pages 259–266, 2000. 23, 24, 33, 39, 50, 63, 161

[GR99] T. Gerstner and M. Rumpf. Multiresolutional parallel isosurface extrac-
tion based on tetrahedral bisection. In Proceedings Symposium on Volume
Visualization, pages 267–278. ACM Press, 1999. 2, 23, 24, 33, 39, 49

[GRW00] T. Gerstner, M. Rumpf, and U. Weikard. Error indicators for multilevel visu-
alization and computing on nested grids. Computers & Graphics, 24(3):363–
373, 2000. 23

[GSDJ04] B. Gregorski, J. Senecal, M.A. Duchaineau, and K.I. Joy. Adaptive extrac-
tion of time-varying isosurfaces. IEEE Transactions on Visualization and
Computer Graphics, 10(6):683–694, 2004. 34, 35, 39

[GSDJ09] B. Gregorski, J. Senecal, M. Duchaineau, and K. I. Joy. Compression and
occlusion culling for fast isosurface extraction from massive datasets. In
Mathematical Foundations of Scientific Visualization, Computer Graphics,
and Massive Data Exploration, Mathematics and Visualization, pages 303–
323. Springer, 2009. 34

[Guo95] B. Guo. Interval set: A volume rendering technique generalizing isosurface
extraction. In Proceedings IEEE Visualization, pages 3–10. IEEE Computer
Society Washington, DC, USA, 1995. 26

[HAF+96] W.L. Hibbard, J. Anderson, I. Foster, B.E. Paul, R. Jacob, C. Schafer, and
M.K. Tyree. Exploring coupled atmosphere-ocean models using Vis5D.
International Journal of High Performance Computing Applications, 10(2-
3):211–222, 1996. 2

[HDJ04] L.M. Hwa, M.A. Duchaineau, and K.I. Joy. Adaptive 4-8 texture hierar-
chies. In Proceedings IEEE Visualization, pages 219–226. IEEE Computer
Society Washington, DC, USA, 2004. 31

179

[HDJ05] L.M. Hwa, M.A. Duchaineau, and K.I. Joy. Real-time optimal adaptation
for planetary geometry and texture: 4-8 tile hierarchies. IEEE Transactions
on Visualization and Computer Graphics, 11(4):355–368, 2005. 24, 29, 31,
39

[Heb94] D.J. Hebert. Symbolic local refinement of tetrahedral grids. Journal of
Symbolic Computation, 17(5):457–472, May 1994. 23, 24, 49, 50, 71, 84

[Heb98] D.J. Hebert. Cyclic interlaced quadtree algorithms for quincunx multireso-
lution. Journal of Algorithms, 27(1):97–128, 1998. 30, 71, 84

[HK95] D. J. Hebert and H. Kim. Image encoding with triangulation wavelets. In
SPIE Conference Series, volume 2569, pages 381–392, 1995. 104

[HS79] GM Hunter and K. Stieglitz. Operations on images using quadtree. IEEE
Transactions on Patern Analysis and Machine Intelligence, 1(2):145–153,
April 1979. 20

[HSSZ97] H.C. Hege, M. Seeba, D. Stalling, and M. Zckler. A generalized marching
cubes algorithm. Technical report, Konrad-Zuse-Zentrum für Information-
stechnik Berlin, 1997. 26, 142

[ISS09] Y. Ito, A.M. Shih, and B.K. Soni. Efficient hexahedral mesh generation
for complex geometries using an improved set of refinement templates. In
Proceedings of the 18th International Meshing Roundtable, pages 103–115,
2009. 20

[JLSW02] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite
data. ACM Trans. Graph., 21(3):339–346, 2002. 26, 27, 36, 142

[JSW03] G. Ji, H. W. Shen, and R. Wenger. Volume tracking using higher dimen-
sional isosurfacing. In G. Turk, J. van Wijk, and R. Moorhead, editors,
Proceedings IEEE Visualization, pages 209–216. IEEE Computer Society,
October 2003. 26

[JU06] T. Ju and T. Udeshi. Intersection-free contouring on an octree grid. In
Proceedings Pacific Graphics, 2006. 36

[KKDH07] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. Unconstrained isosurface
extraction on arbitrary octrees. In Proceedings Eurographics Symposium
on Geometry Processing, pages 125–133. Eurographics Association Aire-
la-Ville, Switzerland, Switzerland, 2007. 36

[Kno06] A. Knoll. A short survey of octree volume rendering techniques. GI Lecture
Notes in Informatics, June 2006. 17

[Kos94] I. Kossaczký. A recursive approach to local mesh refinement in two and
three dimensions. Journal of Computational and Applied Mathematics,
55(3):275–288, 1994. 23

180

[KTY+04] A. Kimura, Y. Takama, Y. Yamazoe, S. Tanaka, and H Tanaka. Parallel vol-
ume segmentation with tetrahedral adaptive grid. International Conference
on Pattern Recognition, 2:281–286, 2004. 2

[Kuh60] H.W. Kuhn. Some combinatorial lemmas in topology. IBM J. Res. Develop,
4:518–524, 1960. 42, 65

[LC87] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. In Proceedings SIGGRAPH, pages 163–
169. ACM Press New York, NY, USA, 1987. 25, 26, 27, 35, 36

[LC10] P. Lindstrom and J. D. Cohen. On-the-fly decompression and rendering of
multiresolution terrain. In Proceedings of ACM Symposium on Interactive
3D Graphics and Games, I3D ’10, pages 65–73, New York, NY, USA, 2010.
ACM. 31

[LDS01] M. Lee, L. De Floriani, and H. Samet. Constant-time neighbor finding in hi-
erarchical tetrahedral meshes. In Proceedings International Conference on
Shape Modeling, pages 286–295, Genova, Italy, May 2001. IEEE Computer
Society. 23, 24, 39, 49, 50, 84, 106, 118, 119, 120

[LDS04] M. Lee, L. De Floriani, and H. Samet. Constant-time navigation in four-
dimensional nested simplicial meshes. In Proceedings Shape Modeling
International 2004, pages 221–230. IEEE Computer Society, June 2004. 2,
24, 34, 39, 49, 50, 84

[Lee06] M. Lee. Spatial Modeling using Triangular, Tetrahedral and Pentatopic
Decompositions. PhD thesis, The University of Maryland, College Park,
2006. 34

[Lev02] J. Levenberg. Fast view-dependent level-of-detail rendering using cached
geometry. In Proceedings IEEE Visualization, pages 259–266, Washington,
DC, USA, 2002. IEEE Computer Society. 29, 39

[LGP+04] L. Linsen, J. Gray, V. Pascucci, M. A. Duchaineau, B. Hamann, and K.I.
Joy. Hierarchical large-scale volume representation with 3√2 subdivision
and trivariate b-spline wavelets. In G. Brunnett, B. Hamann, H. Mueller,
and L. Linsen, editors, Geometric Modeling for Scientific Visualization,
Mathematics + Visualization, pages 359–378. Springer Verlag, Heidelberg,
Germany, 2004. 34, 35, 39

[LH98] Y. Livnat and C. Hansen. View dependent isosurface extraction. In Pro-
ceedings IEEE Visualization, pages 175–180, 1998. 34

[LH04] F. Losasso and H. Hoppe. Geometry clipmaps: Terrain rendering using
nested regular grids. In Proceedings ACM SIGGRAPH, pages 769–776.
ACM New York, NY, USA, 2004. 31

181

[LH06] S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on
Graphics, 25(3):579–588, 2006. 104

[Lic99] W.B.R. Lickorish. Simplicial moves on complexes and manifolds. Geome-
try and Topology Monographs, 2(299-320):314, 1999. 41, 50

[LJ95] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on
bisection. SIAM Journal on Scientific Computing, 16(6):1269–1291, 1995.
23

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A.
Turner. Real-time continuous level of detail rendering of height fields. In
Proceedings ACM SIGGRAPH, pages 109–118, August 1996. 28, 30, 32,
33, 39, 108

[LLVM06] T. Lewiner, H. Lopes, L. Velho, and V. Mello. Extraction and compression
of hierarchical isocontours from image data. Computerized Medical Imag-
ing and Graphics, 30(4):231–242, 2006. Medical Imaging and Graphics in
SIBGRAPI/SIACG. 37

[LP02] P. Lindstrom and V. Pascucci. Terrain simplification simplified: A general
framework for view-dependent out-of-core visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 8(3):239–254, 2002. 2, 24,
30, 32, 34, 39

[LPD+04] L. Linsen, V. Pascucci, MA Duchaineau, B. Hamann, and KI Joy. Wavelet-
based multiresolution with n√2 subdivision. Journal on Computing, Special
Edition: Dagstuhl Seminar on Geometric Modelling, 72:129–142, 2004. 2,
34, 35, 39, 104

[LRC+02] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Hueb-
ner. Level of Detail for 3D Graphics. Computer Graphics and Geometric
Modeling. Morgan-Kaufmann, San Francisco, 2002. 16, 23, 38

[LS00] M. Lee and H. Samet. Navigating through triangle meshes implemented
as linear quadtrees. ACM Transactions on Graphics, 19(2):79–121, April
2000. 66

[LSJ96] Y. Livnat, H.W. Shen, and C.R. Johnson. A near optimal isosurface extrac-
tion algorithm using the span space. IEEE Transactions on Visualization
and Computer Graphics, 2(1):73–84, 1996. 27

[LVLM04a] T. Lewiner, L. Velho, H. Lopes, and V. Mello. Hierarchical isocontours
extraction and compression. In 17th Brazilian Symposium on Computer
Graphics and Image Processing, pages 234–241, Curitiba, PA, October
2004. 37

182

[LVLM04b] T. Lewiner, L. Velho, H. Lopes, and V. Mello. Simplicial isosurface com-
pression. In Vision, Modeling, and Visualization, pages 299–306, Stanford,
CA, November 2004. 37, 39

[Mau95] J. M. Maubach. Local bisection refinement for n-simplicial grids gener-
ated by reflection. SIAM Journal on Scientific Computing, 16(1):210–227,
January 1995. 1, 2, 22, 23, 44, 45, 50, 75, 151

[Mau96] J. M. Maubach. The efficient location of neighbors for locally refined n-
simplicial grids. In 5th Int. Meshing Roundable, 1996. 24, 50, 66

[MDM04] S. Marchesin, J.M. Dischler, and C. Mongenet. 3D ROAM for scalable
volume visualization. In IEEE Symposium on Volume Visualization and
Graphics, pages 79–86, 2004. 23, 34, 39, 87

[MDP08] M.M. Mesmoudi, L. De Floriani, and U. Port. Discrete distortion in trian-
gulated 3-manifolds. Computer Graphics Forum, 27(5):1333–1340, 2008.
104, 105

[Mes48] B.E. Meserve. Double factorials. The American Mathematical Monthly,
55(7):425–426, 1948. 46, 167

[Mit91] W.F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with
hierarchical bases. Journal of computational and applied mathematics,
36(1):65–78, 1991. 22, 23

[Moo92] D.M. Moore. Simplicial mesh generation with applications. PhD thesis,
Cornell University, Ithaca, NY, USA, 1992. 6, 46, 143

[Moo95] D. Moore. The cost of balancing generalized quadtrees. In Proc. ACM
Solid Modeling, pages 305–312. ACM, 1995. 6, 19, 143, 145, 153

[MS93] H. Müller and M. Stark. Adaptive generation of surfaces in volume data.
The Visual Computer, 9(4):182–199, 1993. 36

[MVT03] V. Mello, L. Velho, and G. Taubin. Estimating the in/out function of a
surface represented by points. In Symposium on Solid Modeling and Appli-
cations, pages 108–114, 2003. 2, 36

[MW95] D. Moore and J. Warren. Adaptive simplicial mesh quadtrees. Houston J.
Math, 21(3):525–540, 1995. 22, 66

[NB93] P. Ning and J. Bloomenthal. An evaluation of implicit surface tilers. Com-
puter Graphics and Applications, IEEE, 13(6):33–41, 1993. 25

[New31] M.H.A. Newman. A theorem in combinatorial topology. J. London Math.
Soc, s1–6(3):186–192, 1931. 50

183

[NH91] G.M. Nielson and B. Hamann. The asymptotic decider: Resolving the
ambiguity in marching cubes. In Proceedings IEEE Visualization, pages
83–91, 1991. 25, 26

[Nie03] G. M. Nielson. On marching cubes. IEEE Transactions on Visualization
and Computer Graphics, 9(3):283–297, 2003. 25

[Nie08] G. M. Nielson. Dual marching tetrahedra: Contouring in the tetrahedronal
environment. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, P. Remagnino,
F. Porikli, J. Peters, J. Klosowski, L. Arns, Y. Chun, T. Rhyne, and L. Mon-
roe, editors, Advances in Visual Computing, pages 183–194. Springer, 2008.
26, 142

[NS97] G. M. Nielson and J. Sung. Interval volume tetrahedralization. In Proceed-
ings IEEE Visualization, pages 221–228, 1997. 26, 130

[NSV09] R.H. Nochetto, K.G. Siebert, and A. Veeser. Theory of adaptive finite
element methods: An introduction. In Multiscale, Nonlinear and Adaptive
Approximation, pages 409 –542. Springer, 2009. Dedicated to Wolfgang
Dahmen on the Occasion of his 60th Birthday. 23

[NY06] T.S. Newman and H. Yi. A survey of the marching cubes algorithm. Com-
puters & Graphics, 30(5):854–879, October 2006. 25

[OR97] M. Ohlberger and M. Rumpf. Hierarchical and adaptive visualization on
nested grids. Computing, 56(4):365–385, 1997. 23, 36

[Paj98] R. Pajarola. Large scale terrain visualization using the restricted quadtree
triangulation. In D. Ebert, H. Hagen, and H. Rushmeier, editors, Proceed-
ings IEEE Visualization, pages 19–26, Research Triangle Park, NC, October
1998. IEEE Computer Society. 23, 29, 39, 63, 108

[Pas00] V. Pascucci. Multi-dimensional and multi-resolution geometric data-
structures for scientific visualization. PhD thesis, Purdue University, West
Lafayette, IN, USA, 2000. Major Professor-Bajaj, Chandrajit L. 71, 84

[Pas02] V. Pascucci. Slow Growing Subdivision (SGS) in any dimension: To-
wards removing the curse of dimensionality. Computer Graphics Forum,
21(3):451–460, September 2002. 2, 23, 24, 34, 50, 161

[Pas04] V. Pascucci. Isosurface computation made simple: Hardware acceleration,
adaptive refinement and tetrahedral stripping. In Eurographics/IEEE TVCG
Symposium on Visualization (VisSym), pages 293–300, 2004. 25, 39

[PB00] V. Pascucci and C. L. Bajaj. Time-critical isosurface refinement and smooth-
ing. In Proceedings IEEE Symposium on Volume Visualization, pages 33–
42, Salt Lake City, UT, October 2000. IEEE Computer Society. 37

184

[PBCF93] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-
independent modeling with simplicial complexes. ACM Transactions on
Graphics, 12(1):56–102, January 1993. 5, 118, 119

[PC00] A. Plaza and GF Carey. Local refinement of simplicial grids based on the
skeleton. Applied Numerical Mathematics, 32(2):195–218, 2000. 22

[PF01] V. Pascucci and R. J. Frank. Global static indexing for real-time exploration
of very large regular grids. In Proceedings ACM/IEEE Supercomputing,
pages 45–45, 2001. 88

[PG07] R. Pajarola and E. Gobbetti. Survey of semi-regular multiresolution models
for interactive terrain rendering. The Visual Computer, 23(8):583–605,
2007. 28

[Pom00] A.A. Pomeranz. ROAM using surface triangle clusters (RUSTiC). Master’s
thesis, U.C. Davis, 2000. 29, 30, 35, 39

[PP09] E. Puppo and D. Panozzo. RGB subdivision. IEEE Transactions on Visual-
ization and Computer Graphics, 15(2):295–310, 2009. 22

[PT90] B.A. Payne and A.W. Toga. Surface mapping brain function on 3D models.
Computer Graphics and Applications, IEEE, 10(5):33–41, Sept. 1990. 25

[Pup98] E. Puppo. Variable resolution triangulations. Computational Geometry
Theory and Applications, 11(3-4):219–238, 1998. 30, 108

[PV07] S. Plantinga and G. Vegter. Isotopic meshing of implicit surfaces. The
Visual Computer, 23(1):45–58, 2007. 19, 156, 157

[RH99] J. C. Roberts and S. Hill. Piecewise-linear hypersurfaces using the marching
cube algorithm. In R. Erbacher and A. Pang, editors, Visual Data Explo-
ration and Analysis VI, Proceedings of SPIE Visualization 2000, pages
170–181. SPIE, 1999. 26

[RHSS98] S. Roettger, W. Heidrich, P. Slusallek, and H.P. Seidel. Real-time generation
of continuous levels of detail for height fields. In Proceedings Central Eu-
rope Winter School of Computer Graphics (WSCG), pages 315–322, 1998.
19

[Riv84] M.C. Rivara. Algorithms for refining triangular grids suitable for adaptive
and multigrid techniques. International Journal for Numerical Methods in
Engineering, 20(4):745–756, 1984. 22, 45

[Riv91] M.C. Rivara. Local modification of meshes for adaptive and/or multigrid
finite-element methods. Journal of Computational and Applied Mathemat-
ics, 36(1):79–89, 1991. 22, 45

185

[RL92] M.C. Rivara and C. Levin. A 3D refinement algorithm suitable for adaptive
and multigrid techniques. Communications in Applied Numerical Methods,
8(5):281–290, 1992. 2

[RMSS01] G. V. S. Reddy, H. J. Montas, A. Shirmohammadi, and H. Samet. Quadtree-
based triangular mesh generation for finite element analysis of heteroge-
neous spatial data. In Proceedings of the International ASAE Annual Meet-
ing, Sacramento, CA, 2001. 19, 143

[Ros99] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics, 5(1):47–61,
1999. 105

[RS72] C.P. Rourke and B.J. Sanderson. Introduction to piecewise-linear topology,
volume 69 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer,
1972. 41

[Sam90] H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, Reading, MA, 1990. 24

[Sam06] H. Samet. Foundations of Multidimensional and Metric Data Structures.
The Morgan Kaufmann series in computer graphics and geometric model-
ing. Morgan Kaufmann, 2006. 6, 17, 18, 20, 21, 24, 30, 32, 67, 84, 143,
150

[Sch92] G. Schrack. Finding neighbors of equal size in linear quadtrees and octrees
in constant time. CVGIP: Image Understanding, 55(3):221–230, May 1992.
84

[Sch96] R. Schneiders. Refining quadrilateral and hexahedral element meshes. In
5th International Conference on Grid Generation in Computational Field
Simulations, pages 679–688, Mississippi State University, 1996. 20

[Sew72] E.G. Sewell. Automatic generation of triangulations for piecewise polyno-
mial approximation. PhD thesis, Purdue University, 1972. 23

[Sew79] E.G. Sewell. A finite element program with automatic user-controlled
mesh grading. In R. Vichnevetsky and R.S. Stepleman, editors, Advances
in Computer Methods for Partial Differential Equations III, pages 8–10.
IMACS, 1979. 23

[SFYC96] R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhill. Octree-based decimation
of marching cubes surfaces. In Proceedings IEEE Visualization, pages 335–
342, Los Alamitos, CA, USA, 1996. IEEE Computer Society. 36

[SHLJ96] H.W. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson. Isosurfacing in Span
Space with Utmost Efficiency (ISSUE). In Proceedings IEEE Visualization.
IEEE Computer Society Press Los Alamitos, CA, USA, 1996. 27

186

[Siv96] R. Sivan. Surface modeling using quadtrees. PhD thesis, University of
Maryland, College Park, 1996. 19, 36

[SJW07] S. Schaefer, T. Ju, and J. Warren. Manifold dual contouring. IEEE Transac-
tions on Visualization and Computer Graphics, 13(3):610–619, 2007. 26,
36

[SS92] R. Sivan and H. Samet. Algorithms for constructing quadtree surface maps.
In Proc. 5th Int. Symposium on Spatial Data Handling, pages 361–370,
1992. 6, 19, 143

[SSB08] H. Sundar, R.S. Sampath, and G. Biros. Bottom-up construction and 2:1
balance refinement of linear octrees in parallel. SIAM Journal of Scientific
Computing, 30(5):2675–2708, 2008. 6, 19, 143

[Ste08] R. Stevenson. The completion of locally refined simplicial partitions created
by bisection. Mathematics of Computation, 77(261):227–242, 2008. 23

[Sur] U.S. Geological Survey. Global 30 arc second elevation data. http://edc.
usgs.gov/products/elevation/gtopo30/gtopo30.html. 89

[SZK95] R. Shu, C. Zhou, and M.S. Kankanhalli. Adaptive marching cubes. The
Visual Computer, 11(4):202–217, 1995. 36

[SZL92] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle
meshes. In Proceedings ACM SIGGRAPH, 26(2):65–70, July 1992. 35

[Tan95] H.T. Tanaka. Accuracy-based sampling and reconstruction with adaptive
meshes for parallel hierarchical triangulation. Computer Vision and Image
Understanding, 61(3):335 – 350, 1995. 31, 63, 75

[TO04] T. Tu and D.R. OHallaron. Balanced refinement of massive linear octrees.
Technical Report CMU-CS-04-129, Carnegie Mellon School of Computer
Science, April 2004. 19

[Tod76] M.J. Todd. The computation of fixed points and applications. Number 124
in Lecture Notes in Economics and Mathematical Systems. Springer-Verlag,
1976. 65

[TOL04] T. Tu, D. R. OHallaron, and J. C. Lòpez. Etree: A database-oriented method
for generating large octree meshes. Engineering with Computers, 20:117–
128, 2004. 19

[TPG99] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahe-
dra: Improved iso-surface extraction. Computers and Graphics, 23(4):583–
598, 1999. 25

[Tra97] C. T. Traxler. An algorithm for adaptive mesh refinement in n dimensions.
Computing, 59(2):115–137, 1997. 11, 22, 23

187

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

[TTW03] H. Tanaka, Y. Takama, and H. Wakabayashi. Accuracy-based sampling and
reconstruction with adaptive grid for parallel hierarchical tetrahedrization.
In Proceedings Volume Graphics, pages 79–86. ACM Press, 2003. 75

[Tuc45] A.W. Tucker. Some topological properties of disk and sphere. In Proceed-
ings First Canadian Math. Congress, Montreal, volume 285–309, 1945.
65

[VHB87] B. Von Herzen and A. H. Barr. Accurate triangulations of deformed, inter-
secting surfaces. In Proceedings ACM SIGGRAPH, pages 103–110, New
York, NY, USA, 1987. ACM. 6, 19, 36, 143

[VK96] M.A. Van Kreveld. Efficient methods for isoline extraction from a TIN.
Geographical Information Systems, 10(5):523–540, 1996. 27

[Vol] Volvis library. http://www.volvis.org/. 4, 94, 121

[WB96] C. Weigle and D. Banks. Complex-valued contour meshing. In Proceedings
IEEE Visualization, pages 173–180. IEEE Computer Society, October 1996.
2, 26

[WB98] C. Weigle and D. Banks. Extracting iso-valued features in 4-dimensional
scalar fields. In Proceedings IEEE Visualization, pages 103–110. IEEE
Computer Society, October 1998. 26

[WD08a] K. Weiss and L. De Floriani. Modeling and visualization approaches for
time-varying volumetric data. In Advances in Visual Computing, volume
5359 of Lecture Notes in Computer Science, pages 1000–1010. Springer,
2008. 17, 164

[WD08b] K. Weiss and L. De Floriani. Multiresolution interval volume meshes. In
IEEE/ EG Symposium on Volume and Point-Based Graphics, pages 65–72.
Eurographics Association, 2008. 34, 37, 39, 138, 162

[WD08c] K. Weiss and L. De Floriani. Sparse terrain pyramids. In Proceedings
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 115–124, New York, NY, USA, 2008. ACM.
25, 32, 39, 161

[WD09a] K. Weiss and L. De Floriani. Diamond hierarchies of arbitrary dimension.
Computer Graphics Forum (Proceedings SGP 2009), 28(5):1289–1300,
2009. 25, 34, 154, 161

[WD09b] K. Weiss and L. De Floriani. Supercubes: A high-level primitive for
diamond hierarchies. IEEE Transactions on Visualization and Com-
puter Graphics (Proceedings IEEE Visualization 2009), 15(6):1603–1610,
November-December 2009. 25, 32, 39, 161

188

http://www.volvis.org/

[WD10a] K. Weiss and L. De Floriani. Bisection-based triangulations of nested
hypercubic meshes. In S. Shontz, editor, Proceedings 19th International
Meshing Roundtable, pages 315–333, Chattanooga, Tennessee, October
3–6 2010. 162

[WD10b] K. Weiss and L. De Floriani. Isodiamond hierarchies: An efficient multires-
olution representation for isosurfaces and interval volumes. IEEE Transac-
tions on Visualization and Computer Graphics, 16(4):583 – 598, July-Aug.
2010. 34, 37, 39, 162

[WD10c] K. Weiss and L. De Floriani. Nested refinement domains for tetrahedral
and diamond hierarchies. In IEEE Visualization 2010 Poster Compendium,
2010. 63

[WD10d] K. Weiss and L. De Floriani. Simplex and diamond hierarchies: Models
and applications. In H. Hauser and E. Reinhard, editors, EG 2010 - State of
the Art Reports, pages 113–136, Norrköping, Sweden, 2010. Eurographics
Association. 17, 120

[WD11] K. Weiss and L. De Floriani. Simplex and diamond hierarchies: Models
and applications. Computer Graphics Forum, 30:(To appear), 2011. 17, 25,
161

[WDSB00] Z.J. Wood, M. Desbrun, P. Schroder, and D. Breen. Semi-regular mesh
extraction from volumes. In Proceedings IEEE Visualization, pages 275–
282. IEEE Computer Society Press Los Alamitos, CA, USA, 2000. 35

[Wei81] A. Weiser. Local-mesh, local-order, adaptive finite element methods with a
posteriori error estimators for elliptic partial differential equations. PhD
thesis, Yale University, 1981. 143, 153

[Whi57] H. Whitney. Geometric integration theory. Princeton University Press,
1957. 65

[Wil88] R. Williams. The goblin quadtree. The Computer Journal, 31(4):358–363,
1988. 151

[WKE99] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of regular
volume data by adaptive reconstruction of isosurfaces. The Visual Com-
puter, 15(2):100–111, 1999. 6, 36, 143

[WMD10] K. Weiss, M.M. Mesmoudi, and L. De Floriani. Multiresolution analysis
of 3D images based on discrete distortion. In International Conference on
Pattern Recognition (ICPR), pages 4093–4096, Istanbul, Turkey, August
2010. IEEE Computer Society. 104

[WVG90] J. Wilhelms and A. Van Gelder. Topological considerations in isosurface
generation extended abstract. In Proceedings Workshop on Volume Visual-
ization, pages 79–86. ACM Press New York, NY, USA, 1990. 25

189

[WVG92] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, 1992. 27, 36, 63, 87

[YWD11] M.A. Yalçın, K. Weiss, and L. De Floriani. GPU algorithms for diamond-
based multiresolution terrain processing. In Eurographics Symposium on
Parallel Graphics and Visualization, Bangor, Wales, April 10–11 2011. 31,
39, 75, 161

[ZBS03] Y. Zhang, C. Bajaj, and B.S. Sohn. Adaptive and quality 3d meshing from
imaging data. In Proceedings ACM Symposium on Solid Modeling and
Applications, pages 286–291. ACM Press New York, NY, USA, 2003. 27,
36

[ZCK97] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework
for visualizing regular volume data. In R. Yagel and H. Hagen, editors,
Proceedings IEEE Visualization, pages 135–142. IEEE Computer Society,
October 1997. 2, 23, 32, 33, 34, 39, 49, 74

[Zha95] S. Zhang. Successive subdivision of tetrahedra and multigrid methods on
tetrahedral meshes. Houston Journal of Mathematics, 21:541–556, 1995.
22

[ZS01] D. Zorin and P. Schröder. A unified framework for primal/dual quadrilateral
subdivision schemes. Computer Aided Geometric Design, 18(5):429–454,
2001. 19

190

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Contribution
	Thesis organization

	Background notions
	Cellular meshes
	Hypercubic meshes
	Simplicial meshes

	Nested mesh refinement
	Regular refinement
	Bisection refinement

	Modeling scalar fields
	Isosurfaces and interval volumes

	Multiresolution models
	Selective refinement

	State of the art
	Domain decompositions
	Uniform grid
	Quadtrees, octrees and 2^d-trees
	K-d trees
	Nested simplicial meshes

	Marching cells
	Isosurfaces
	Interval volumes

	Hierarchical data structures for scientific visualization
	Hierarchy as spatial access structure
	Multiresolution field representations
	Adaptive representations for extracted meshes
	Multiresolution representations for extracted meshes

	Discussion

	Diamond hierarchies of arbitrary dimension
	Cross simplex and cross complex
	Simplicial decomposition of hypercubes
	Kuhn subdivisions
	Maubach's typographical bisection scheme
	Fully subdivided hypercubes

	A hierarchy of RSB simplices
	A hierarchy of diamonds
	Diamond subdivision
	Diamond dependency relation
	Parent-child duets

	Properties of a hierarchy of diamonds
	Querying an RSB hierarchy
	Discussion

	Supercubes: A high-level primitive for RSB hierarchies
	Tiling space with Kuhn cubes
	Supercubes
	Discussion

	Encoding diamond hierarchies
	Encoding diamonds
	Diamond scale
	Diamond type
	Supercube origin
	Diamond components
	Example
	Domain corners

	Encoding supercubes
	Encoding collections of supercubes

	Encoding RSB meshes
	Simplex-based representation
	Diamond-based representation
	Supercube-based representation

	Diamond-based multiresolution scalar fields
	DMSF Model
	Generating a DMSF

	Full DMSF
	Partial DMSF
	Theoretical evaluation
	Applications
	Error-based generation
	Range-based generation
	Region Of Interest-based generation
	Merging corresponding partial DMSFs

	Runtime performance
	Discussion

	Topological navigation on diamond meshes
	Topological relations
	Properties of diamond meshes
	Retrieving topological relations on diamond meshes
	Retrieving topological relations on 2D diamond meshes
	Boundary relations involving 2D diamonds
	Adjacency relations involving 2D diamonds
	Co-boundary relations involving 2D diamonds
	Deriving the remaining topological relations

	Retrieving topological relations on 3D diamond meshes
	Boundary relations involving 3D diamonds
	Adjacency relations involving 3D diamonds
	Co-boundary relations involving 3D diamonds

	Results
	Discussion

	Isodiamond hierarchies
	Isodiamonds
	Encoding isodiamonds
	Relevant isodiamonds
	Definition
	Data structure
	Generating an RI hierarchy
	Querying an RI hierarchy

	Minimal isodiamonds
	Definition
	Properties
	Data structure
	Generating an MI hierarchy
	Querying an MI hierarchy

	Results
	Front-size and extraction times

	Discussion

	Hierarchies of balanced hypercubes
	Hypercube hierarchies
	Balanced refinement
	Balanced hypercube hierarchies

	Encoding hypercube hierarchies and their extracted meshes
	Encoding hypercubes
	Encoding dependency relations
	Encoding k-balanced hypercubic meshes

	Triangulating nested hypercubic meshes
	Mesh balancing
	Vertex caching
	Hypercube triangulation
	Results

	Conclusions
	Three families of nested RSB meshes
	Future work

	Double factorial
	Common terms involving binomials, exponents and factorials
	Binomial theorem
	Simplified binomial theorem
	Related proof

	Bibliography

